April 2017, 10(2): 273-288. doi: 10.3934/dcdss.2017013

Homoclinic tangencies to resonant saddles and discrete Lorenz attractors

1. 

Lobachevsky State University of Nizhny Novgorod, 23 Gagarin av., Nizhny Novgorod, 603950, Russia

2. 

Universität Bremen, Bibliothekstrasse 1,28359 Bremen, Germany

* Corresponding author:Ivan Ovsyannikov.

Received  October 2015 Revised  November 2016 Published  January 2017

We study bifurcations of periodic orbits in three parameter general unfoldings of certain types quadratic homoclinic tangencies to saddle fixed points. We apply the rescaling technique to first return (Poincaré) maps and show that the rescaled maps can be brought to a map asymptotically close to the 3D Henon map $\bar x=y,\bar y=z,\bar z = M_1 + M_2 y + B x - z^2$ which, as known [14], exhibits discrete Lorenz attractors in some open domains of the parameters. Based on this, we prove the existence of infinite cascades of systems possessing discrete Lorenz attractors near the original diffeomorphism.

Citation: Sergey Gonchenko, Ivan Ovsyannikov. Homoclinic tangencies to resonant saddles and discrete Lorenz attractors. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 273-288. doi: 10.3934/dcdss.2017013
References:
[1]

V. S. AfraimovichV. V. Bykov and L. P. Shilnikov, On attracting structurally unstable limit sets of Lorenz attractor type, Trudy Moskov. Mat. Obshch., 44 (1982), 150-212.

[2]

V. S. Aframovich and L. P. Shilnikov, Strange attractors and quasiattractors, in Nonlinear Dynamics and Turbulence eds. G. I. Barenblatt, G. Iooss and D. D. Joseph, Boston, Pitmen, 1983.

[3]

A. Arneodo, P. Coullet and C. Tresser, Possible new strange attractors with spiral structure, Comm. Math. Phys. , 79 (1981), 573-579, available at http://projecteuclid.org/euclid. cmp/1103909142. doi: 10.1007/BF01209312.

[4]

E. Colli, Infinitely many coexisting strange attractors, Ann. Inst. H. Poincar Anal. Non Linéaire, 15 (1998), 539-579. doi: 10.1016/S0294-1449(98)80001-2.

[5]

A. S. Gonchenko and S. V. Gonchenko, Lorenz-like attractors in nonholonomic models of a rattleback, Nonlinearity, 28 (2015), 3403-3417. doi: 10.1088/0951-7715/28/9/3403.

[6]

A. S. Gonchenko and S. V. Gonchenko, Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps, Physica D: Nonlinear Phenomena, 337 (2016), 43-57, arXiv: 1510.02252. doi: 10.1016/j.physd.2016.07.006.

[7]

A. S. GonchenkoS. V. Gonchenko and A. O. Kazakov, Richness of chaotic dynamics in nonholonomic models of a Celtic stone, Regul. Chaotic Dyn., 18 (2013), 521-538. doi: 10.1134/S1560354713050055.

[8]

A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov and D. V. Turaev, Simple scenarios of onset of chaos in three-dimensional maps Internat. J. Bifur. Chaos Appl. Sci. Engrg. 24 (2014), 1440005, 25pp. doi: 10.1142/S0218127414400057.

[9]

A. S. GonchenkoS. V. GonchenkoI. I. Ovsyannikov and D. V. Turaev, Examples of Lorenz-Like Attractors in Hénon-Like Maps, Math. Model. Nat. Phenom., 8 (2013), 48-70. doi: 10.1051/mmnp/20138504.

[10]

A. S. GonchenkoS. V. Gonchenko and L. P. Shilnikov, Towards scenarios of chaos appearance in three-dimensional maps, Rus. J. Nonlin. Dyn., 8 (2012), 3-28.

[11]

S. V. GonchenkoV. S. Gonchenko and J. C. Tatjer, Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized Hénon maps, Regul. Chaotic Dyn., 12 (2007), 233-266. doi: 10.1134/S156035470703001X.

[12]

S. V. GonchenkoJ. D. Meiss and I. I. Ovsyannikov, Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation, Regul. Chaotic Dyn., 11 (2006), 191-212. doi: 10.1070/RD2006v011n02ABEH000345.

[13]

S. V. Gonchenko and I. I. Ovsyannikov, On global bifurcations of three-dimensional diffeomorphisms leading to Lorenz-like attractors, Mat. Model. of Nat. Phenom, 8 (2013), 71-83. doi: 10.1051/mmnp/20138505.

[14]

S. V. GonchenkoI. I. OvsyannikovC. Simó and D. Turaev, Three-dimensional Hénon-like maps and wild Lorenz-like attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3493-3508. doi: 10.1142/S0218127405014180.

[15]

S. V. GonchenkoI. I. Ovsyannikov and J. C. Tatjer, Birth of discrete lorenz attractors at the bifurcations of 3D maps with homoclinic tangencies to saddle points, Regul. Chaotic Dyn., 19 (2014), 495-505. doi: 10.1134/S1560354714040054.

[16]

S. V. Gonchenko and L. P. Shilnikov, Moduli of systems with a structurally unstable homoclinic Poincare curve, (Russian), Izv. Ross. Akad. Nauk Ser. Mat. , 56 (1992), 1165-1197, English translation: Russian Acad. Sci. Izv. Math. , 41 (1993), 417-445. doi: 10.1070/IM1993v041n03ABEH002270.

[17]

S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits, Dokl. Akad. Nauk, 330 (1993), 144-147.

[18]

S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits, Chaos, 6 (1996), 15-31. doi: 10.1063/1.166154.

[19]

S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, On dynamical properties of multidimensional diffeomorphisms from Newhouse regions, Nonlinearity, 21 (2008), 923-972. doi: 10.1088/0951-7715/21/5/003.

[20]

S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors, Regul. Chaotic Dyn., 14 (2009), 137-147. doi: 10.1134/S1560354709010092.

[21]

S. V. GonchenkoO. V. Sten'kin and D. V. Turaev, Complexity of homoclinic bifurcations and $Ω$-moduli, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 969-989. doi: 10.1142/S0218127496000539.

[22]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds. Lecture Notes in Math. Springer-Verlag, Berlin, 583 (1977), ⅱ+149 pp.

[23]

A. J. Homburg, Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria, Nonlinearity, 15 (2002), 1029-1050. doi: 10.1088/0951-7715/15/4/304.

[24]

L. Mora and M. Viana, Abundance of strange attractors, Acta Math., 171 (1993), 1-71. doi: 10.1007/BF02392766.

[25]

S. E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. , 50 (1979), 101-151. Available from: http://www.numdam.org/item?id=PMIHES_1979__50__101_0.

[26]

S. E. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. , 57 (1983), 5-71. Available from: http://www.numdam.org/item?id=PMIHES_1983__57__5_0.

[27]

I. M. Ovsyannikov and L. P. Shil'nikov, On systems with a saddle-focus homoclinic curve, Mat. Sb. (N.S.), 130 (1986), 552-570.

[28]

I. M. Ovsyannikov and L. P. Shilnikov, Systems with a homoclinic curve of multidimensional saddle-focus, and spiral chaos, (Russian), Mat. Sb. , 182 (1991), 1043-1073; English translation in Math. USSR-Sb. 73 (1992), 415-443.

[29]

J. Palis and M. Viana, High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math., 140 (1994), 207-250. doi: 10.2307/2118546.

[30]

A. L. Shilnikov, On bifurcations of the Lorenz attractor in the Shimuizu-Morioka model. Homoclinic chaos, Phys. D, 62 (1993), 338-346. doi: 10.1016/0167-2789(93)90292-9.

[31]

A. L. ShilnikovL. P. Shilnikov and D. V. Turaev, Normal forms and Lorenz attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 3 (1993), 1123-1139. doi: 10.1142/S0218127493000933.

[32]

L. P. Shilnikov, On the generation of a periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type, Mat. Sb. (N.S.), 77 (1968), 461-472.

[33]

L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part Ⅰ World Scientific, 1998. doi: 10.1142/9789812798596.

[34]

T. Shimizu and N. Morioka, On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model, Phys. Lett. A, 76 (1980), 201-204. doi: 10.1016/0375-9601(80)90466-1.

[35]

J. C. Tatjer, Three-dimensional dissipative diffeomorphisms with homoclinic tangencies, Ergodic Theory Dynam. Systems, 21 (2001), 249-302. doi: 10.1017/S0143385701001146.

[36]

G. Tigan and D. Turaev, Analytical search for homoclinic bifurcations in Morioka-Shimizu model, Phys. D, 240 (2011), 985-989. doi: 10.1016/j.physd.2011.02.013.

[37]

D. V. Turaev, On dimension of nonlocal bifurcational problems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 919-948. doi: 10.1142/S0218127496000515.

[38]

D. V. Turaev and L. P. Shilnikov, An example of a wild strange attractor, (Russian), Mat. Sb. , 189 (1998), 137-160; English translation: Sb. Math. , 189 (1998), 29-314. doi: 10.1070/SM1998v189n02ABEH000300.

[39]

D. V. Turaev and L. P. Shilnikov, Pseudo-hyperbolisity and the problem on periodic perturbations of Lorenz-like attractors, (Russian) Dokl. Akad. Nauk. , 418 (2008), 23-27; English translation: Dokl. Math. , 77 (2008), 17-21. doi: 10.1134/S1064562408010055.

show all references

References:
[1]

V. S. AfraimovichV. V. Bykov and L. P. Shilnikov, On attracting structurally unstable limit sets of Lorenz attractor type, Trudy Moskov. Mat. Obshch., 44 (1982), 150-212.

[2]

V. S. Aframovich and L. P. Shilnikov, Strange attractors and quasiattractors, in Nonlinear Dynamics and Turbulence eds. G. I. Barenblatt, G. Iooss and D. D. Joseph, Boston, Pitmen, 1983.

[3]

A. Arneodo, P. Coullet and C. Tresser, Possible new strange attractors with spiral structure, Comm. Math. Phys. , 79 (1981), 573-579, available at http://projecteuclid.org/euclid. cmp/1103909142. doi: 10.1007/BF01209312.

[4]

E. Colli, Infinitely many coexisting strange attractors, Ann. Inst. H. Poincar Anal. Non Linéaire, 15 (1998), 539-579. doi: 10.1016/S0294-1449(98)80001-2.

[5]

A. S. Gonchenko and S. V. Gonchenko, Lorenz-like attractors in nonholonomic models of a rattleback, Nonlinearity, 28 (2015), 3403-3417. doi: 10.1088/0951-7715/28/9/3403.

[6]

A. S. Gonchenko and S. V. Gonchenko, Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps, Physica D: Nonlinear Phenomena, 337 (2016), 43-57, arXiv: 1510.02252. doi: 10.1016/j.physd.2016.07.006.

[7]

A. S. GonchenkoS. V. Gonchenko and A. O. Kazakov, Richness of chaotic dynamics in nonholonomic models of a Celtic stone, Regul. Chaotic Dyn., 18 (2013), 521-538. doi: 10.1134/S1560354713050055.

[8]

A. S. Gonchenko, S. V. Gonchenko, A. O. Kazakov and D. V. Turaev, Simple scenarios of onset of chaos in three-dimensional maps Internat. J. Bifur. Chaos Appl. Sci. Engrg. 24 (2014), 1440005, 25pp. doi: 10.1142/S0218127414400057.

[9]

A. S. GonchenkoS. V. GonchenkoI. I. Ovsyannikov and D. V. Turaev, Examples of Lorenz-Like Attractors in Hénon-Like Maps, Math. Model. Nat. Phenom., 8 (2013), 48-70. doi: 10.1051/mmnp/20138504.

[10]

A. S. GonchenkoS. V. Gonchenko and L. P. Shilnikov, Towards scenarios of chaos appearance in three-dimensional maps, Rus. J. Nonlin. Dyn., 8 (2012), 3-28.

[11]

S. V. GonchenkoV. S. Gonchenko and J. C. Tatjer, Bifurcations of three-dimensional diffeomorphisms with non-simple quadratic homoclinic tangencies and generalized Hénon maps, Regul. Chaotic Dyn., 12 (2007), 233-266. doi: 10.1134/S156035470703001X.

[12]

S. V. GonchenkoJ. D. Meiss and I. I. Ovsyannikov, Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation, Regul. Chaotic Dyn., 11 (2006), 191-212. doi: 10.1070/RD2006v011n02ABEH000345.

[13]

S. V. Gonchenko and I. I. Ovsyannikov, On global bifurcations of three-dimensional diffeomorphisms leading to Lorenz-like attractors, Mat. Model. of Nat. Phenom, 8 (2013), 71-83. doi: 10.1051/mmnp/20138505.

[14]

S. V. GonchenkoI. I. OvsyannikovC. Simó and D. Turaev, Three-dimensional Hénon-like maps and wild Lorenz-like attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3493-3508. doi: 10.1142/S0218127405014180.

[15]

S. V. GonchenkoI. I. Ovsyannikov and J. C. Tatjer, Birth of discrete lorenz attractors at the bifurcations of 3D maps with homoclinic tangencies to saddle points, Regul. Chaotic Dyn., 19 (2014), 495-505. doi: 10.1134/S1560354714040054.

[16]

S. V. Gonchenko and L. P. Shilnikov, Moduli of systems with a structurally unstable homoclinic Poincare curve, (Russian), Izv. Ross. Akad. Nauk Ser. Mat. , 56 (1992), 1165-1197, English translation: Russian Acad. Sci. Izv. Math. , 41 (1993), 417-445. doi: 10.1070/IM1993v041n03ABEH002270.

[17]

S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits, Dokl. Akad. Nauk, 330 (1993), 144-147.

[18]

S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits, Chaos, 6 (1996), 15-31. doi: 10.1063/1.166154.

[19]

S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, On dynamical properties of multidimensional diffeomorphisms from Newhouse regions, Nonlinearity, 21 (2008), 923-972. doi: 10.1088/0951-7715/21/5/003.

[20]

S. V. GonchenkoL. P. Shilnikov and D. V. Turaev, On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors, Regul. Chaotic Dyn., 14 (2009), 137-147. doi: 10.1134/S1560354709010092.

[21]

S. V. GonchenkoO. V. Sten'kin and D. V. Turaev, Complexity of homoclinic bifurcations and $Ω$-moduli, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 969-989. doi: 10.1142/S0218127496000539.

[22]

M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds. Lecture Notes in Math. Springer-Verlag, Berlin, 583 (1977), ⅱ+149 pp.

[23]

A. J. Homburg, Periodic attractors, strange attractors and hyperbolic dynamics near homoclinic orbits to saddle-focus equilibria, Nonlinearity, 15 (2002), 1029-1050. doi: 10.1088/0951-7715/15/4/304.

[24]

L. Mora and M. Viana, Abundance of strange attractors, Acta Math., 171 (1993), 1-71. doi: 10.1007/BF02392766.

[25]

S. E. Newhouse, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. , 50 (1979), 101-151. Available from: http://www.numdam.org/item?id=PMIHES_1979__50__101_0.

[26]

S. E. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. , 57 (1983), 5-71. Available from: http://www.numdam.org/item?id=PMIHES_1983__57__5_0.

[27]

I. M. Ovsyannikov and L. P. Shil'nikov, On systems with a saddle-focus homoclinic curve, Mat. Sb. (N.S.), 130 (1986), 552-570.

[28]

I. M. Ovsyannikov and L. P. Shilnikov, Systems with a homoclinic curve of multidimensional saddle-focus, and spiral chaos, (Russian), Mat. Sb. , 182 (1991), 1043-1073; English translation in Math. USSR-Sb. 73 (1992), 415-443.

[29]

J. Palis and M. Viana, High dimension diffeomorphisms displaying infinitely many periodic attractors, Ann. of Math., 140 (1994), 207-250. doi: 10.2307/2118546.

[30]

A. L. Shilnikov, On bifurcations of the Lorenz attractor in the Shimuizu-Morioka model. Homoclinic chaos, Phys. D, 62 (1993), 338-346. doi: 10.1016/0167-2789(93)90292-9.

[31]

A. L. ShilnikovL. P. Shilnikov and D. V. Turaev, Normal forms and Lorenz attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 3 (1993), 1123-1139. doi: 10.1142/S0218127493000933.

[32]

L. P. Shilnikov, On the generation of a periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type, Mat. Sb. (N.S.), 77 (1968), 461-472.

[33]

L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev and L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part Ⅰ World Scientific, 1998. doi: 10.1142/9789812798596.

[34]

T. Shimizu and N. Morioka, On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model, Phys. Lett. A, 76 (1980), 201-204. doi: 10.1016/0375-9601(80)90466-1.

[35]

J. C. Tatjer, Three-dimensional dissipative diffeomorphisms with homoclinic tangencies, Ergodic Theory Dynam. Systems, 21 (2001), 249-302. doi: 10.1017/S0143385701001146.

[36]

G. Tigan and D. Turaev, Analytical search for homoclinic bifurcations in Morioka-Shimizu model, Phys. D, 240 (2011), 985-989. doi: 10.1016/j.physd.2011.02.013.

[37]

D. V. Turaev, On dimension of nonlocal bifurcational problems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), 919-948. doi: 10.1142/S0218127496000515.

[38]

D. V. Turaev and L. P. Shilnikov, An example of a wild strange attractor, (Russian), Mat. Sb. , 189 (1998), 137-160; English translation: Sb. Math. , 189 (1998), 29-314. doi: 10.1070/SM1998v189n02ABEH000300.

[39]

D. V. Turaev and L. P. Shilnikov, Pseudo-hyperbolisity and the problem on periodic perturbations of Lorenz-like attractors, (Russian) Dokl. Akad. Nauk. , 418 (2008), 23-27; English translation: Dokl. Math. , 77 (2008), 17-21. doi: 10.1134/S1064562408010055.

Figure 1.  Schematic examples of pseudohyperbolic attractors. (a) Shilnikov-Turaev wild spiral attractor for a four-dimensional flow. (b) A discrete super-Lorenz attractor that contains a saddle fixed point $O$, pieces of its unstable (one-dimensional) manifolds are drown. Fixed points $O_1$ and $O_2$ (with $\dim W^u(O_i) = 2$ do not belong to the attractor, they are posed in "holes".
Figure 2.  Plots of attractors of map (1) observed numerically in [14] for $M_1=0,B=0.7$ and $M_2=0.85$ (left) or $M_2=0.815$ (right). In the left panel, the projection on the $(x,y)$-plane is also displayed. In the right panel, a "figure-eight" saddle closed invariant curve inside the lacuna is shown.
Figure 3.  The main steps of the creation of a discrete (c) Lorenz attractor; (d) figure-eight attractor.
Figure 4.  Two examples of 3D diffeomorphisms with nontransversal heteroclinic cycles containing two fixed points $O_1$ and $O_2$ of type $(2,1)$: (a) $O_1$ is a saddle-focus, this case was studied in [20]; (b) $O_1$ and $O_2$ are both saddle-foci, this case was studied in [13].
Figure 5.  Examples of 3D maps with quadratic homoclinic tangencies to a saddle fixed point $O$ of conservative type (whose bifurcations lead to the birth of discrete Lorenz attractors): (a) $O$ is a conservative saddle-focus [12]; (b) $O$ is a general saddle and the tangency is not simple [15]; (c) $O$ is a resonant saddle ($\lambda_1 = -\lambda_2$), studied in the present paper.
[1]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[2]

Hsuan-Wen Su. Finding invariant tori with Poincare's map. Communications on Pure & Applied Analysis, 2008, 7 (2) : 433-443. doi: 10.3934/cpaa.2008.7.433

[3]

T. Tachim Medjo. Non-autonomous 3D primitive equations with oscillating external force and its global attractor. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 265-291. doi: 10.3934/dcds.2012.32.265

[4]

Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1

[5]

Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031

[6]

Gabriel Deugoue. Approximation of the trajectory attractor of the 3D MHD System. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2119-2144. doi: 10.3934/cpaa.2013.12.2119

[7]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[8]

Ning Ju. The finite dimensional global attractor for the 3D viscous Primitive Equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7001-7020. doi: 10.3934/dcds.2016104

[9]

T. Tachim Medjo. A non-autonomous 3D Lagrangian averaged Navier-Stokes-$\alpha$ model with oscillating external force and its global attractor. Communications on Pure & Applied Analysis, 2011, 10 (2) : 415-433. doi: 10.3934/cpaa.2011.10.415

[10]

Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295

[11]

Cristina Lizana, Leonardo Mora. Lower bounds for the Hausdorff dimension of the geometric Lorenz attractor: The homoclinic case. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 699-709. doi: 10.3934/dcds.2008.22.699

[12]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[13]

Ciprian G. Gal, T. Tachim Medjo. Approximation of the trajectory attractor for a 3D model of incompressible two-phase-flows. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2229-2252. doi: 10.3934/cpaa.2014.13.2229

[14]

Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481

[15]

Boling Guo, Guoli Zhou. Finite dimensionality of global attractor for the solutions to 3D viscous primitive equations of large-scale moist atmosphere. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4305-4327. doi: 10.3934/dcdsb.2018160

[16]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[17]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[18]

Yong Zhou. Remarks on regularities for the 3D MHD equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 881-886. doi: 10.3934/dcds.2005.12.881

[19]

Hyeong-Ohk Bae, Bum Ja Jin. Estimates of the wake for the 3D Oseen equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 1-18. doi: 10.3934/dcdsb.2008.10.1

[20]

Indranil SenGupta, Weisheng Jiang, Bo Sun, Maria Christina Mariani. Superradiance problem in a 3D annular domain. Conference Publications, 2011, 2011 (Special) : 1309-1318. doi: 10.3934/proc.2011.2011.1309

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (15)
  • HTML views (53)
  • Cited by (0)

Other articles
by authors

[Back to Top]