February 2017, 11(1): 225-235. doi: 10.3934/amc.2017014

On defining generalized rank weights

1. 

Institut de Mathématiques, Université de Neuchatel, Rue Emilie-Argand 11,2000 Neuchatel, Switzerland

2. 

Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513,5600 MB Eindhoven, The Netherlands

* Corresponding author

Received  August 2015 Published  February 2017

This paper investigates the generalized rank weights, with a definition implied by the study of the generalized rank weight enumerator. We study rank metric codes over $L$, where $L$ is a finite extension of a field $K$. This is a generalization of the case where $K=\mathbb{F}_q $ and $L={\mathbb{F}_{{q^m}}}$ of Gabidulin codes to arbitrary characteristic. We show equivalence to previous definitions, in particular the ones by Kurihara-Matsumoto-Uyematsu [12,13], Oggier-Sboui [16] and Ducoat [6]. As an application of the notion of generalized rank weights, we discuss codes that are degenerate with respect to the rank metric.

Citation: Relinde Jurrius, Ruud Pellikaan. On defining generalized rank weights. Advances in Mathematics of Communications, 2017, 11 (1) : 225-235. doi: 10.3934/amc.2017014
References:
[1]

D. Augot, Generalization of Gabidulin codes over rational function fields, in MTNS-2014 21st Int. Syp. Math. Theory Netw. Syst. , 2014.

[2]

D. Augot, P. Loidreau and G. Robert, Rank metric and Gabidulin codes in characteristic zero, in IEEE ISIT-2013 Int. Syp. Inf. Theory, 2013,509-513. doi: 10.1109/ISIT.2013.6620278.

[3]

T. Berger, Isometries for rank distance and permutation group of Gabidulin codes, in Proc. 8th Int. Workshop Algebr. Combin. Coding Theory, 2002, 30-33. doi: 10.1109/TIT.2003.819322.

[4]

T. Berger, Isometries for rank distance and permutation group of Gabidulin codes, IEEE Trans. Inform. Theory, 49 (2003), 3016-3019. doi: 10.1109/TIT.2003.819322.

[5]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241. doi: 10.1016/0097-3165(78)90015-8.

[6]

J. Ducoat, Generalized rank weights: a duality statement, in Topics in Finite Fields (eds. G. Kyureghyan, G. L. Mullen and A. Pott), AMS, 2015,101-109. doi: 10.1090/conm/632/12622.

[7]

È. M. Gabidulin, Theory of codes with maximum rank distance, Probl. Pered. Inform., 21 (1985), 3-16.

[8]

M. Giorgetti and A. Previtali, Galois invariance, trace codes and subfield subcodes, Finite Fields Appl., 16 (2010), 96-99. doi: 10.1016/j.ffa.2010.01.002.

[9]

R. Jurrius and R. Pellikaan, Codes, arrangements and matroids, in Algebraic Geometry Modeling in Information Theory (ed. E. Martínez-Moro), World Scientific, New Jersey, 2013,219-325. doi: 10.1142/9789814335768_0006.

[10]

R. Jurrius and R. Pellikaan, The extended and generalized rank weight enumerator, in Proc. ACA 2014 Appl. Comp. Algebra CACTC@ACA Comp. Algebra Coding Theory Crypt. , Fordham Univ. , New York, 2014. doi: 10.1145/2768577.2768605.

[11]

G. Katsman and M. Tsfasman, Spectra of algebraic-geometric codes, Probl. Pered. Inform., 23 (1987), 19-34.

[12]

J. Kurihara, R. Matsumoto and T. Uyematsu, New parameters of linear codes expressing security performance of universal secure network coding, in 50th Ann. Allerton Conf. Commun. Contr. Comp. , 2012,533-540. doi: 10.1109/Allerton.2012.6483264.

[13]

J. KuriharaR. Matsumoto and T. Uyematsu, Relative generalized rank weight of linear codes and its applications to network coding, IEEE Trans. Inform. Theory, 61 (2015), 3912-3936. doi: 10.1109/TIT.2015.2429713.

[14]

S. Lang, Algebra, Addison-Wesley, Reading, 1965.

[15]

U. Martínez-Peñas, On the Similarities Between Generalized Rank and Hamming Weights and Their Applications to Network Coding, IEEE Trans. Inform. Theory, 62 (2016), 4081-4095. doi: 10.1109/TIT.2016.2570238.

[16]

F. Oggier and A. Sboui, On the existence of generalized rank weights, in IEEE ISIT-2012 Int. Symp. Inform. Theory, 2012,406-410.

[17]

A. Ravagnani, Generalized weights: an anticode approach, J. Pure Appl. Algebra, 220 (2016), 1946-1962. doi: 10.1016/j.jpaa.2015.10.009.

[18]

H. Stichtenoth, On the dimension of subfield subcodes, IEEE Trans. Inform. Theory, 36 (1990), 90-93. doi: 10.1109/18.50376.

show all references

References:
[1]

D. Augot, Generalization of Gabidulin codes over rational function fields, in MTNS-2014 21st Int. Syp. Math. Theory Netw. Syst. , 2014.

[2]

D. Augot, P. Loidreau and G. Robert, Rank metric and Gabidulin codes in characteristic zero, in IEEE ISIT-2013 Int. Syp. Inf. Theory, 2013,509-513. doi: 10.1109/ISIT.2013.6620278.

[3]

T. Berger, Isometries for rank distance and permutation group of Gabidulin codes, in Proc. 8th Int. Workshop Algebr. Combin. Coding Theory, 2002, 30-33. doi: 10.1109/TIT.2003.819322.

[4]

T. Berger, Isometries for rank distance and permutation group of Gabidulin codes, IEEE Trans. Inform. Theory, 49 (2003), 3016-3019. doi: 10.1109/TIT.2003.819322.

[5]

P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Combin. Theory Ser. A, 25 (1978), 226-241. doi: 10.1016/0097-3165(78)90015-8.

[6]

J. Ducoat, Generalized rank weights: a duality statement, in Topics in Finite Fields (eds. G. Kyureghyan, G. L. Mullen and A. Pott), AMS, 2015,101-109. doi: 10.1090/conm/632/12622.

[7]

È. M. Gabidulin, Theory of codes with maximum rank distance, Probl. Pered. Inform., 21 (1985), 3-16.

[8]

M. Giorgetti and A. Previtali, Galois invariance, trace codes and subfield subcodes, Finite Fields Appl., 16 (2010), 96-99. doi: 10.1016/j.ffa.2010.01.002.

[9]

R. Jurrius and R. Pellikaan, Codes, arrangements and matroids, in Algebraic Geometry Modeling in Information Theory (ed. E. Martínez-Moro), World Scientific, New Jersey, 2013,219-325. doi: 10.1142/9789814335768_0006.

[10]

R. Jurrius and R. Pellikaan, The extended and generalized rank weight enumerator, in Proc. ACA 2014 Appl. Comp. Algebra CACTC@ACA Comp. Algebra Coding Theory Crypt. , Fordham Univ. , New York, 2014. doi: 10.1145/2768577.2768605.

[11]

G. Katsman and M. Tsfasman, Spectra of algebraic-geometric codes, Probl. Pered. Inform., 23 (1987), 19-34.

[12]

J. Kurihara, R. Matsumoto and T. Uyematsu, New parameters of linear codes expressing security performance of universal secure network coding, in 50th Ann. Allerton Conf. Commun. Contr. Comp. , 2012,533-540. doi: 10.1109/Allerton.2012.6483264.

[13]

J. KuriharaR. Matsumoto and T. Uyematsu, Relative generalized rank weight of linear codes and its applications to network coding, IEEE Trans. Inform. Theory, 61 (2015), 3912-3936. doi: 10.1109/TIT.2015.2429713.

[14]

S. Lang, Algebra, Addison-Wesley, Reading, 1965.

[15]

U. Martínez-Peñas, On the Similarities Between Generalized Rank and Hamming Weights and Their Applications to Network Coding, IEEE Trans. Inform. Theory, 62 (2016), 4081-4095. doi: 10.1109/TIT.2016.2570238.

[16]

F. Oggier and A. Sboui, On the existence of generalized rank weights, in IEEE ISIT-2012 Int. Symp. Inform. Theory, 2012,406-410.

[17]

A. Ravagnani, Generalized weights: an anticode approach, J. Pure Appl. Algebra, 220 (2016), 1946-1962. doi: 10.1016/j.jpaa.2015.10.009.

[18]

H. Stichtenoth, On the dimension of subfield subcodes, IEEE Trans. Inform. Theory, 36 (1990), 90-93. doi: 10.1109/18.50376.

[1]

Umberto Martínez-Peñas. Rank equivalent and rank degenerate skew cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 267-282. doi: 10.3934/amc.2017018

[2]

Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87

[3]

Anna-Lena Horlemann-Trautmann, Kyle Marshall. New criteria for MRD and Gabidulin codes and some Rank-Metric code constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 533-548. doi: 10.3934/amc.2017042

[4]

John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019

[5]

Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149

[6]

Gokhan Calis, O. Ozan Koyluoglu. Architecture-aware coding for distributed storage: Repairable block failure resilient codes. Advances in Mathematics of Communications, 2018, 12 (3) : 465-503. doi: 10.3934/amc.2018028

[7]

Keisuke Minami, Takahiro Matsuda, Tetsuya Takine, Taku Noguchi. Asynchronous multiple source network coding for wireless broadcasting. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 577-592. doi: 10.3934/naco.2011.1.577

[8]

Alonso sepúlveda Castellanos. Generalized Hamming weights of codes over the $\mathcal{GH}$ curve. Advances in Mathematics of Communications, 2017, 11 (1) : 115-122. doi: 10.3934/amc.2017006

[9]

Stefan Martignoli, Ruedi Stoop. Phase-locking and Arnold coding in prototypical network topologies. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 145-162. doi: 10.3934/dcdsb.2008.9.145

[10]

Giuseppe Bianchi, Lorenzo Bracciale, Keren Censor-Hillel, Andrea Lincoln, Muriel Médard. The one-out-of-k retrieval problem and linear network coding. Advances in Mathematics of Communications, 2016, 10 (1) : 95-112. doi: 10.3934/amc.2016.10.95

[11]

Kamil Otal, Ferruh Özbudak. Explicit constructions of some non-Gabidulin linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 589-600. doi: 10.3934/amc.2016028

[12]

Carla Mascia, Giancarlo Rinaldo, Massimiliano Sala. Hilbert quasi-polynomial for order domains and application to coding theory. Advances in Mathematics of Communications, 2018, 12 (2) : 287-301. doi: 10.3934/amc.2018018

[13]

Yiwei Liu, Zihui Liu. On some classes of codes with a few weights. Advances in Mathematics of Communications, 2018, 12 (2) : 415-428. doi: 10.3934/amc.2018025

[14]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[15]

Olav Geil, Stefano Martin. Relative generalized Hamming weights of q-ary Reed-Muller codes. Advances in Mathematics of Communications, 2017, 11 (3) : 503-531. doi: 10.3934/amc.2017041

[16]

Olof Heden, Fabio Pasticci, Thomas Westerbäck. On the symmetry group of extended perfect binary codes of length $n+1$ and rank $n-\log(n+1)+2$. Advances in Mathematics of Communications, 2012, 6 (2) : 121-130. doi: 10.3934/amc.2012.6.121

[17]

Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008

[18]

José Ignacio Iglesias Curto. Generalized AG convolutional codes. Advances in Mathematics of Communications, 2009, 3 (4) : 317-328. doi: 10.3934/amc.2009.3.317

[19]

Yongbo Xia, Tor Helleseth, Chunlei Li. Some new classes of cyclic codes with three or six weights. Advances in Mathematics of Communications, 2015, 9 (1) : 23-36. doi: 10.3934/amc.2015.9.23

[20]

Zihui Liu, Dajian Liao. Higher weights and near-MDR codes over chain rings. Advances in Mathematics of Communications, 2018, 12 (4) : 761-772. doi: 10.3934/amc.2018045

2017 Impact Factor: 0.564

Metrics

  • PDF downloads (5)
  • HTML views (1)
  • Cited by (2)

Other articles
by authors

[Back to Top]