• Previous Article
    Optimal control of a multi-level dynamic model for biofuel production
  • MCRF Home
  • This Issue
  • Next Article
    Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs
June 2017, 7(2): 259-288. doi: 10.3934/mcrf.2017009

Minimal time synthesis for a kinematic drone model

1. 

Université de Toulon, CNRS, LSIS, UMR 7296, F-83957 La Garde, France

2. 

Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP, UMR 5007, 43 bd du 11 novembre 1918, F-69100 Villeurbanne, France

* Corresponding author

Received  April 2016 Revised  October 2016 Published  April 2017

Fund Project: The authors were partially supported by the Grant ANR-12-BS03-0005 LIMICOS of the ANR

In this paper, we consider a (rough) kinematic model for a UAV flying at constant altitude moving forward with positive lower and upper bounded linear velocities and positive minimum turning radius. For this model, we consider the problem of minimizing the time travelled by the UAV starting from a general configuration to connect a specified target being a fixed circle of minimum turning radius. The time-optimal synthesis is presented as a partition of the state space which defines a unique optimal path such that the target can be reached optimally.

Citation: Marc-Auréle Lagache, Ulysse Serres, Vincent Andrieu. Minimal time synthesis for a kinematic drone model. Mathematical Control & Related Fields, 2017, 7 (2) : 259-288. doi: 10.3934/mcrf.2017009
References:
[1]

A. A. Agrachev and Y. L. Sachkov, Control Theory From the Geometric Viewpoint, vol. 87 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.

[2]

A. Balluchi, A. Bicchi, B. Piccoli and P. Souères, Stability and robustness of optimalsynthesis for route tracking by Dubins' Vehicules, in Decision and Control (CDC), 2000 IEEE 39th Annual Conference on, 2000,581-586.

[3]

U. BoscainT. Chambrion and G. Charlot, Nonisotropic 3-level quantum systems: Complete solutions for minimum time and minimum energy, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 957-990 (electronic). doi: 10.3934/dcdsb.2005.5.957.

[4]

U. Boscain, F. Grönberg, R. Long and H. Rabitz, Minimal time trajectories for two-level quantum systems with two bounded controls J. Math. Phys. , 55 (2014), 062106, 25pp. doi: 10.1063/1.4882158.

[5]

U. Boscain and B. Piccoli, Extremal synthesis for generic planar systems, J. Dynam. Control Systems, 7 (2001), 209-258. doi: 10.1023/A:1013003204923.

[6]

U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds, vol. 43 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin, 2004.

[7]

U. Boscain and B. Piccoli, Synthesis theory in optimal control, Encyclopedia of Systems and Control, Springer London, London, (2014), 1-11. doi: 10.1007/978-1-4471-5102-9_50-1.

[8]

A. Bressan and B. Piccoli, A generic classification of time-optimal planar stabilizing feedbacks, SIAM J. Control Optim., 36 (1998), 12-32 (electronic). doi: 10.1137/S0363012995291117.

[9]

L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents, Amer. J. Math., 79 (1957), 497-516. doi: 10.2307/2372560.

[10]

M. A. Lagache, U. Serres and V. Andrieu, Time minimum synthesis for a kinematic drone model, in 2015 54th IEEE Conference on Decision and Control (CDC), 2015,4067-4072. doi: 10.1109/CDC.2015.7402852.

[11]

T. MaillotU. BoscainJ.-P. Gauthier and U. Serres, Lyapunov and Minimum-Time Path Planning for Drones, J. Dyn. Control Syst., 21 (2015), 47-80. doi: 10.1007/s10883-014-9222-y.

[12]

B. Piccoli, Classification of generic singularities for the planar time-optimal synthesis, SIAM J. Control Optim., 34 (1996), 1914-1946. doi: 10.1137/S0363012993256149.

[13]

B. Piccoli and H. Sussmann, Regular synthesis and sufficiency conditions for optimality, SIAM J. Control Optim., 39 (2000), 359-410 (electronic). doi: 10.1137/S0363012999322031.

[14]

P. SouèresA. Balluchi and A. Bicchi, Optimal feedback control for route tracking with a bounded-curvature vehicle, Internat. J. Control, 74 (2001), 1009-1019. doi: 10.1080/00207170110052211.

[15]

H. Sussmann, Regular synthesis for time-optimal control of single-input real analytic systems in the plane, SIAM J. Control Optim., 25 (1987), 1145-1162. doi: 10.1137/0325062.

show all references

References:
[1]

A. A. Agrachev and Y. L. Sachkov, Control Theory From the Geometric Viewpoint, vol. 87 of Encyclopaedia of Mathematical Sciences, Springer-Verlag, Berlin, 2004. doi: 10.1007/978-3-662-06404-7.

[2]

A. Balluchi, A. Bicchi, B. Piccoli and P. Souères, Stability and robustness of optimalsynthesis for route tracking by Dubins' Vehicules, in Decision and Control (CDC), 2000 IEEE 39th Annual Conference on, 2000,581-586.

[3]

U. BoscainT. Chambrion and G. Charlot, Nonisotropic 3-level quantum systems: Complete solutions for minimum time and minimum energy, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 957-990 (electronic). doi: 10.3934/dcdsb.2005.5.957.

[4]

U. Boscain, F. Grönberg, R. Long and H. Rabitz, Minimal time trajectories for two-level quantum systems with two bounded controls J. Math. Phys. , 55 (2014), 062106, 25pp. doi: 10.1063/1.4882158.

[5]

U. Boscain and B. Piccoli, Extremal synthesis for generic planar systems, J. Dynam. Control Systems, 7 (2001), 209-258. doi: 10.1023/A:1013003204923.

[6]

U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds, vol. 43 of Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin, 2004.

[7]

U. Boscain and B. Piccoli, Synthesis theory in optimal control, Encyclopedia of Systems and Control, Springer London, London, (2014), 1-11. doi: 10.1007/978-1-4471-5102-9_50-1.

[8]

A. Bressan and B. Piccoli, A generic classification of time-optimal planar stabilizing feedbacks, SIAM J. Control Optim., 36 (1998), 12-32 (electronic). doi: 10.1137/S0363012995291117.

[9]

L. E. Dubins, On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents, Amer. J. Math., 79 (1957), 497-516. doi: 10.2307/2372560.

[10]

M. A. Lagache, U. Serres and V. Andrieu, Time minimum synthesis for a kinematic drone model, in 2015 54th IEEE Conference on Decision and Control (CDC), 2015,4067-4072. doi: 10.1109/CDC.2015.7402852.

[11]

T. MaillotU. BoscainJ.-P. Gauthier and U. Serres, Lyapunov and Minimum-Time Path Planning for Drones, J. Dyn. Control Syst., 21 (2015), 47-80. doi: 10.1007/s10883-014-9222-y.

[12]

B. Piccoli, Classification of generic singularities for the planar time-optimal synthesis, SIAM J. Control Optim., 34 (1996), 1914-1946. doi: 10.1137/S0363012993256149.

[13]

B. Piccoli and H. Sussmann, Regular synthesis and sufficiency conditions for optimality, SIAM J. Control Optim., 39 (2000), 359-410 (electronic). doi: 10.1137/S0363012999322031.

[14]

P. SouèresA. Balluchi and A. Bicchi, Optimal feedback control for route tracking with a bounded-curvature vehicle, Internat. J. Control, 74 (2001), 1009-1019. doi: 10.1080/00207170110052211.

[15]

H. Sussmann, Regular synthesis for time-optimal control of single-input real analytic systems in the plane, SIAM J. Control Optim., 25 (1987), 1145-1162. doi: 10.1137/0325062.

Figure 1.  Candidate extremal trajectories of problem $\bf{(}{{\bf{P}}_{\bf{2}}}\bf{)}$ issued from ${\mathit{\tilde X}_{\rm{0}}}$
Figure 2.  Extremal trajectories starting from ${\mathit{\tilde X}_{\rm{0}}}$ and having one switching
Figure 3.  Time-optimal synthesis for the problem $\bf{(}{{\bf{P}}_{\bf{1}}}\bf{)}$
Figure 4.  Domains on which at most one switching is possible
Figure 5.  Bang-bang-singular-bang optimal trajectories. Two optimal trajectories solutions of problem $\bf{(}{{\bf{P}}_{\bf{1}}}\bf{)}$ starting from the same point in the cut locus (left) and the corresponding optimal trajectories solutions of problem $\bf{(}{{\bf{P}}_{\bf{0}}}\bf{)}$ (right)
Figure 6.  Bang-bang-bang-bang-bang optimal trajectories and a bang-bang-bang-bang-bang-bang optimal trajectory. Three optimal trajectories solutions of problem $\bf{(}{{\bf{P}}_{\bf{1}}}\bf{)}$ starting from the same point in the cut locus (left) and the corresponding optimal trajectories solutions of problem $\bf{(}{{\bf{P}}_{\bf{0}}}\bf{)}$ (right)
Figure 7.  The abnormal trajectory of problem $\bf{(}{{\bf{P}}_{\bf{1}}}\bf{)}$ and the corresponding trajectory for problem $\bf{(}{{\bf{P}}_{\bf{0}}}\bf{)}$ (right)
Figure 8.  Intersection of $\gamma^{MPp}$ with $\gamma^{Mm}$ and $\gamma^{MmM}$ (left) and the corresponding cut locus (right)
Figure 9.  Intersection of $\gamma^{MPpPMm}$ with $\gamma^{MmMP}$, $\gamma^{MmMPp}$ and $\gamma^{MPpPM}$
Table 1.  Notation of the five possible optimal controls
Control Notation
$(-1,1)$ $\mathit{m}$
$(1,1)$ $\mathit{p}$
$(-1,\eta)$ $\mathit{M}$
$(1,\eta)$ $\mathit{P}$
$u$-singular $\mathit{s}$
Control Notation
$(-1,1)$ $\mathit{m}$
$(1,1)$ $\mathit{p}$
$(-1,\eta)$ $\mathit{M}$
$(1,\eta)$ $\mathit{P}$
$u$-singular $\mathit{s}$
Table 2.  Color convention of the optimal synthesis
$(-1,1)$-bang arc Blue
$(1,1)$-bang arc Orange
$(-1,\eta)$-bang arc Purple
$(1,\eta)$-bang arc Red
$u$-singular arc Magenta
$u$-switching curves Dashed black
$v$-switching curves Gray
Cut Locus Green
Abnormal Cut Locus Cyan
$(-1,1)$-bang arc Blue
$(1,1)$-bang arc Orange
$(-1,\eta)$-bang arc Purple
$(1,\eta)$-bang arc Red
$u$-singular arc Magenta
$u$-switching curves Dashed black
$v$-switching curves Gray
Cut Locus Green
Abnormal Cut Locus Cyan
[1]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[2]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[3]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[4]

Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004

[5]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[6]

Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174

[7]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[8]

H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77

[9]

Evgeny I. Veremey, Vladimir V. Eremeev. SISO H-Optimal synthesis with initially specified structure of control law. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 121-138. doi: 10.3934/naco.2017009

[10]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[11]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[12]

Qiying Hu, Chen Xu, Wuyi Yue. A unified model for state feedback of discrete event systems II: Control synthesis problems. Journal of Industrial & Management Optimization, 2008, 4 (4) : 713-726. doi: 10.3934/jimo.2008.4.713

[13]

N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations & Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235

[14]

Fulvia Confortola, Elisa Mastrogiacomo. Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Mathematical Control & Related Fields, 2015, 5 (2) : 191-235. doi: 10.3934/mcrf.2015.5.191

[15]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

[16]

Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456

[17]

Piermarco Cannarsa, Carlo Sinestrari. On a class of nonlinear time optimal control problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 285-300. doi: 10.3934/dcds.1995.1.285

[18]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[19]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[20]

Elena Goncharova, Maxim Staritsyn. Optimal control of dynamical systems with polynomial impulses. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4367-4384. doi: 10.3934/dcds.2015.35.4367

2017 Impact Factor: 0.542

Metrics

  • PDF downloads (2)
  • HTML views (1)
  • Cited by (0)

[Back to Top]