• Previous Article
    Existence and concentration for Kirchhoff type equations around topologically critical points of the potential
  • CPAA Home
  • This Issue
  • Next Article
    A new second critical exponent and life span for a quasilinear degenerate parabolic equation with weighted nonlocal sources
September  2017, 16(5): 1673-1695. doi: 10.3934/cpaa.2017080

Semilinear damped wave equation in locally uniform spaces

1. 

Institute of Mathematics of the Czech Academy of Sciences, Prague, Žitná 25,115 67 Praha 1, Czech Republic

2. 

Department of Mathematical Analysis, Charles University, Prague, Sokolovská 83,186 75 Praha 8, Czech Republic

* Corresponding author

Received  September 2016 Revised  March 2017 Published  May 2017

We study a damped wave equation with a nonlinear damping in the locally uniform spaces and prove well-posedness and existence of a locally compact attractor. An upper bound on the Kolmogorov's $\varepsilon$-entropy is also established using the method of trajectories.

Citation: Martin Michálek, Dalibor Pražák, Jakub Slavík. Semilinear damped wave equation in locally uniform spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1673-1695. doi: 10.3934/cpaa.2017080
References:
[1]

P. Anthony and S. Zelik, Infinite-energy solutions for the Navier-Stokes equations in a strip revisited, Commun. Pure Appl. Anal., 13 (2014), 1361-1393. doi: 10.3934/cpaa.2014.13.1361. Google Scholar

[2]

J. M. ArrietaA. Rodriguez-BernalJ. W. Cholewa and T. Dlotko, Linear parabolic equations in locally uniform spaces, Math. Models Methods Appl. Sci., 14 (2004), 253-293. doi: 10.1142/S0218202504003234. Google Scholar

[3]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683. doi: 10.1016/j.jde.2010.03.009. Google Scholar

[4]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512. doi: 10.1007/s10884-004-4289-x. Google Scholar

[5]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), ⅷ+183. doi: 10.1090/memo/0912. Google Scholar

[6]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, vol. 37 of RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd. , Chichester, 1994. Google Scholar

[7]

E. Feireisl, Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1051-1062. doi: 10.1017/S0308210500022630. Google Scholar

[8]

E. Feireisl, Global attractors for semilinear damped wave equations with supercritical exponent, J. Differential Equations, 116 (1995), 431-447. doi: 10.1006/jdeq.1995.1042. Google Scholar

[9]

M. GrasselliD. Pražák and G. Schimperna, Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories, J. Differential Equations, 249 (2010), 2287-2315. doi: 10.1016/j.jde.2010.06.001. Google Scholar

[10]

V. KalantarovA. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré, 17 (2016), 2555-2584. doi: 10.1007/s00023-016-0480-y. Google Scholar

[11]

L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323. doi: 10.1080/03605309508821133. Google Scholar

[12]

A. K. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical exponents, J. Differential Equations, 230 (2006), 702-719. doi: 10.1016/j.jde.2006.06.001. Google Scholar

[13]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems, in Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), vol. 50 of Progr. Nonlinear Differential Equations Appl. , Birkhäuser, Basel, 2002,197-216. Google Scholar

[14]

J. -L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969. Google Scholar

[15]

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains-existence and comparison, Nonlinearity, 8 (1995), 743-768. Google Scholar

[16]

J. Málek and D. Pražák, Large time behavior via the method of $\ell$-trajectories, Journal of Differential Equations, 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087. Google Scholar

[17]

D. Pražák, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, J. Dynam. Differential Equations, 14 (2002), 763-776. doi: 10.1023/A:1020756426088. Google Scholar

[18]

A. Savostianov, Infinite energy solutions for critical wave equation with fractional damping in unbounded domains, Nonlinear Anal., 136 (2016), 136-167. doi: 10.1016/j.na.2016.02.016. Google Scholar

[19]

C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, Journal of Differential Equations, 227 (2006), 427-443. doi: 10.1016/j.jde.2005.09.010. Google Scholar

[20]

M. Yang and C. Sun, Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity, Trans. Amer. Math. Soc., 361 (2009), 1069-1101. doi: 10.1090/S0002-9947-08-04680-1. Google Scholar

[21]

S. Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities, Discrete Contin. Dyn. Syst., 11 (2004), 351-0392. doi: 10.3934/dcds.2004.11.351. Google Scholar

[22]

S. V. Zelik, The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dynam. Systems, 7 (2001), 593-641. doi: 10.3934/dcds.2001.7.593. Google Scholar

[23]

S. V. Zelik, The attractor for a nonlinear reaction-diffusion system in the unbounded domain and Kolmogorov's $ε$-entropy, Math. Nachr., 232 (2001), 129-179. doi: 10.1002/1522-2616(200112)232:1<129::AID-MANA129>3.3.CO;2-K. Google Scholar

show all references

References:
[1]

P. Anthony and S. Zelik, Infinite-energy solutions for the Navier-Stokes equations in a strip revisited, Commun. Pure Appl. Anal., 13 (2014), 1361-1393. doi: 10.3934/cpaa.2014.13.1361. Google Scholar

[2]

J. M. ArrietaA. Rodriguez-BernalJ. W. Cholewa and T. Dlotko, Linear parabolic equations in locally uniform spaces, Math. Models Methods Appl. Sci., 14 (2004), 253-293. doi: 10.1142/S0218202504003234. Google Scholar

[3]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683. doi: 10.1016/j.jde.2010.03.009. Google Scholar

[4]

I. Chueshov and I. Lasiecka, Attractors for second-order evolution equations with a nonlinear damping, J. Dynam. Differential Equations, 16 (2004), 469-512. doi: 10.1007/s10884-004-4289-x. Google Scholar

[5]

I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Mem. Amer. Math. Soc., 195 (2008), ⅷ+183. doi: 10.1090/memo/0912. Google Scholar

[6]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, vol. 37 of RAM: Research in Applied Mathematics, Masson, Paris; John Wiley & Sons, Ltd. , Chichester, 1994. Google Scholar

[7]

E. Feireisl, Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 1051-1062. doi: 10.1017/S0308210500022630. Google Scholar

[8]

E. Feireisl, Global attractors for semilinear damped wave equations with supercritical exponent, J. Differential Equations, 116 (1995), 431-447. doi: 10.1006/jdeq.1995.1042. Google Scholar

[9]

M. GrasselliD. Pražák and G. Schimperna, Attractors for nonlinear reaction-diffusion systems in unbounded domains via the method of short trajectories, J. Differential Equations, 249 (2010), 2287-2315. doi: 10.1016/j.jde.2010.06.001. Google Scholar

[10]

V. KalantarovA. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains, Ann. Henri Poincaré, 17 (2016), 2555-2584. doi: 10.1007/s00023-016-0480-y. Google Scholar

[11]

L. Kapitanski, Minimal compact global attractor for a damped semilinear wave equation, Comm. Partial Differential Equations, 20 (1995), 1303-1323. doi: 10.1080/03605309508821133. Google Scholar

[12]

A. K. Khanmamedov, Global attractors for wave equations with nonlinear interior damping and critical exponents, J. Differential Equations, 230 (2006), 702-719. doi: 10.1016/j.jde.2006.06.001. Google Scholar

[13]

H. Koch and I. Lasiecka, Hadamard well-posedness of weak solutions in nonlinear dynamic elasticity-full von Karman systems, in Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), vol. 50 of Progr. Nonlinear Differential Equations Appl. , Birkhäuser, Basel, 2002,197-216. Google Scholar

[14]

J. -L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod; Gauthier-Villars, Paris, 1969. Google Scholar

[15]

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains-existence and comparison, Nonlinearity, 8 (1995), 743-768. Google Scholar

[16]

J. Málek and D. Pražák, Large time behavior via the method of $\ell$-trajectories, Journal of Differential Equations, 181 (2002), 243-279. doi: 10.1006/jdeq.2001.4087. Google Scholar

[17]

D. Pražák, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, J. Dynam. Differential Equations, 14 (2002), 763-776. doi: 10.1023/A:1020756426088. Google Scholar

[18]

A. Savostianov, Infinite energy solutions for critical wave equation with fractional damping in unbounded domains, Nonlinear Anal., 136 (2016), 136-167. doi: 10.1016/j.na.2016.02.016. Google Scholar

[19]

C. SunM. Yang and C. Zhong, Global attractors for the wave equation with nonlinear damping, Journal of Differential Equations, 227 (2006), 427-443. doi: 10.1016/j.jde.2005.09.010. Google Scholar

[20]

M. Yang and C. Sun, Dynamics of strongly damped wave equations in locally uniform spaces: attractors and asymptotic regularity, Trans. Amer. Math. Soc., 361 (2009), 1069-1101. doi: 10.1090/S0002-9947-08-04680-1. Google Scholar

[21]

S. Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities, Discrete Contin. Dyn. Syst., 11 (2004), 351-0392. doi: 10.3934/dcds.2004.11.351. Google Scholar

[22]

S. V. Zelik, The attractor for a nonlinear hyperbolic equation in the unbounded domain, Discrete Contin. Dynam. Systems, 7 (2001), 593-641. doi: 10.3934/dcds.2001.7.593. Google Scholar

[23]

S. V. Zelik, The attractor for a nonlinear reaction-diffusion system in the unbounded domain and Kolmogorov's $ε$-entropy, Math. Nachr., 232 (2001), 129-179. doi: 10.1002/1522-2616(200112)232:1<129::AID-MANA129>3.3.CO;2-K. Google Scholar

[1]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[2]

A. Kh. Khanmamedov. Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 119-138. doi: 10.3934/dcds.2011.31.119

[3]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[4]

Dalibor Pražák, Jakub Slavík. Attractors and entropy bounds for a nonlinear RDEs with distributed delay in unbounded domains. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1259-1277. doi: 10.3934/dcdsb.2016.21.1259

[5]

Björn Birnir, Kenneth Nelson. The existence of smooth attractors of damped and driven nonlinear wave equations with critical exponent , s = 5. Conference Publications, 1998, 1998 (Special) : 100-117. doi: 10.3934/proc.1998.1998.100

[6]

Yong Yang, Bingsheng Zhang. On the Kolmogorov entropy of the weak global attractor of 3D Navier-Stokes equations:Ⅰ. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2339-2350. doi: 10.3934/dcdsb.2017101

[7]

Bouthaina Abdelhedi. Existence of periodic solutions of a system of damped wave equations in thin domains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 767-800. doi: 10.3934/dcds.2008.20.767

[8]

Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068

[9]

Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019179

[10]

Jaeyoung Byeon, Ohsang Kwon, Yoshihito Oshita. Standing wave concentrating on compact manifolds for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 825-842. doi: 10.3934/cpaa.2015.14.825

[11]

Cedric Galusinski, Serguei Zelik. Uniform Gevrey regularity for the attractor of a damped wave equation. Conference Publications, 2003, 2003 (Special) : 305-312. doi: 10.3934/proc.2003.2003.305

[12]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[13]

Hiroshi Takeda. Global existence of solutions for higher order nonlinear damped wave equations. Conference Publications, 2011, 2011 (Special) : 1358-1367. doi: 10.3934/proc.2011.2011.1358

[14]

Genni Fragnelli, Dimitri Mugnai. Stability of solutions for nonlinear wave equations with a positive--negative damping. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 615-622. doi: 10.3934/dcdss.2011.4.615

[15]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[16]

A. Kh. Khanmamedov. Long-time behaviour of wave equations with nonlinear interior damping. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1185-1198. doi: 10.3934/dcds.2008.21.1185

[17]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[18]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[19]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[20]

Luca Rossi. Non-existence of positive solutions of fully nonlinear elliptic equations in unbounded domains. Communications on Pure & Applied Analysis, 2008, 7 (1) : 125-141. doi: 10.3934/cpaa.2008.7.125

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (13)
  • HTML views (15)
  • Cited by (0)

[Back to Top]