# American Institute of Mathematical Sciences

December  2017, 14(5&6): 1477-1498. doi: 10.3934/mbe.2017077

## Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations

 1 College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China 2 College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China 3 Lamps and Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada

* Corresponding author: Sanling Yuan

Received  June 23, 2016 Accepted  September 27, 2016 Published  May 2017

Fund Project: The research is supported by the National Natural Science Foundation of China (11271260,11671260), Innovation program of Shanghai Municipal Education Committee (13ZZ116), Shanghai Leading Academic Discipline Project (No. XTKX2012), and the Hujiang Foundation of China (B14005).

In this paper, we investigate the dynamics of a delayed logistic model with both impulsive and stochastic perturbations. The impulse is introduced at fixed moments and the stochastic perturbation is of white noise type which is assumed to be proportional to the population density. We start with the existence and uniqueness of the positive solution of the model, then establish sufficient conditions ensuring its global attractivity. By using the theory of integral Markov semigroups, we further derive sufficient conditions for the existence of the stationary distribution of the system. Finally, we perform the extinction analysis of the model. Numerical simulations illustrate the obtained theoretical results.

Citation: Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1477-1498. doi: 10.3934/mbe.2017077
##### References:

show all references

##### References:
Trajectories of impulsive stochastic system (5) with different $\sigma$ and $b_k$. Here $(S(0), x(0))=(1, 1)$ and $E^*(x^*, y^*)=(1.0909, 1.8182)$. System (5) is asymptotically stable
Probability densities of $x(t)$ for system (5) based on $10000$ sample pathes, computed with the noise intensity $\sigma=0.03$, and for (a) differential initial value and (b) different iterative times. There exists stationary distribution and the density is stable
The dynamics of the system (5) with different $\sigma$. (a) The population $x(t)$ is extinct with $\sigma=0.8$. (c) The population $x(t)$ is persistent with $\sigma=0.1$
 [1] Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051 [2] Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124 [3] Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507 [4] Qingyan Shi, Junping Shi, Yongli Song. Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 467-486. doi: 10.3934/dcdsb.2018182 [5] Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 [6] Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201 [7] Dongxi Li, Ni Zhang, Ming Yan, Yanya Xing. Survival analysis for tumor growth model with stochastic perturbation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5707-5722. doi: 10.3934/dcdsb.2021041 [8] Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004 [9] Chuang Xu. Strong Allee effect in a stochastic logistic model with mate limitation and stochastic immigration. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2321-2336. doi: 10.3934/dcdsb.2016049 [10] Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete & Continuous Dynamical Systems, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267 [11] Xing Liang, Lei Zhang. The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 2055-2065. doi: 10.3934/dcdsb.2020280 [12] Feng Jiao, Jian Ren, Jianshe Yu. Analytical formula and dynamic profile of mRNA distribution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 241-257. doi: 10.3934/dcdsb.2019180 [13] Xingwang Yu, Sanling Yuan. Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (7) : 2373-2390. doi: 10.3934/dcdsb.2020014 [14] Tohru Tsujikawa, Kousuke Kuto, Yasuhito Miyamoto, Hirofumi Izuhara. Stationary solutions for some shadow system of the Keller-Segel model with logistic growth. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 1023-1034. doi: 10.3934/dcdss.2015.8.1023 [15] Shangzhi Li, Shangjiang Guo. Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 5101-5134. doi: 10.3934/dcdsb.2020335 [16] Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5641-5660. doi: 10.3934/dcdsb.2020371 [17] Xueyan Yang, Xiaodi Li, Qiang Xi, Peiyong Duan. Review of stability and stabilization for impulsive delayed systems. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1495-1515. doi: 10.3934/mbe.2018069 [18] Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717 [19] Zuowei Cai, Jianhua Huang, Liu Yang, Lihong Huang. Periodicity and stabilization control of the delayed Filippov system with perturbation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (4) : 1439-1467. doi: 10.3934/dcdsb.2019235 [20] Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265

2018 Impact Factor: 1.313