April 2018, 15(2): 337-359. doi: 10.3934/mbe.2018015

The potential impact of a prophylactic vaccine for Ebola in Sierra Leone

Rhodes College, Department of Mathematics & Computer Science, 2000 N. Parkway, Memphis, TN 38112, USA

* Corresponding author: Erin N. Bodine.

Received  July 12, 2016 Accepted  April 05, 2017 Published  June 2017

The 2014 outbreak of Ebola virus disease (EVD) in West Africa was multinational and of an unprecedented scale primarily affecting the countries of Guinea, Liberia, and Sierra Leone. One of the qualities that makes EVD of high public concern is its potential for extremely high mortality rates (up to 90%). A prophylactic vaccine for ebolavirus (rVSV-ZEBOV) has been developed, and clinical trials show near-perfect efficacy. We have developed an ordinary differential equations model that simulates an EVD epidemic and takes into account (1) transmission through contact with infectious EVD individuals and deceased EVD bodies, (2) the heterogeneity of the risk of becoming infected with EVD, and (3) the increased survival rate of infected EVD patients due to greater access to trained healthcare providers. Using fitted parameter values that closely simulate the dynamics of the 2014 outbreak in Sierra Leone, we utilize our model to predict the potential impact of a prophylactic vaccine for the ebolavirus using various vaccination strategies including ring vaccination. Our results show that an rVSV-ZEBOV vaccination coverage as low as 40% in the general population and 95% in healthcare workers will prevent another catastrophic outbreak like the 2014 outbreak from occurring.

Citation: Erin N. Bodine, Connor Cook, Mikayla Shorten. The potential impact of a prophylactic vaccine for Ebola in Sierra Leone. Mathematical Biosciences & Engineering, 2018, 15 (2) : 337-359. doi: 10.3934/mbe.2018015
References:
[1]

M. Ajelli, S. Merler, L. Fumanelli, A. Pastore, Y. Piontti, N. E. Dean, I. M. Longini Jr. , M. E. Halloran and A. Vespignani, Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: A computational modeling analysis BMC Medicine 14(2016), p130. doi: 10.1186/s12916-016-0678-3.

[2]

C. L. Althaus, Estimating the reproduction number of ebola virus (EBOV) during the 2014 outbreak in West Africa PLOS Currents Outbreaks (2014), Edition 1. doi: 10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288.

[3]

E. J. AmundsenH. StigumJ. A. Rottingen and O. O. Aalen, Definition and estimation of an actual reproduction number describing past infectious disease transmission: application to HIV epidemics among homosexual men in Denmark, Norway, and Sweden, Epidemiol Infect, 132 (2004), 1139-1149. doi: 10.1017/S0950268804002997.

[4]

D. Bernoulli and S. Blower, An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it, Reviews in Medical Virology, 14 (2004), 275-288. doi: 10.1002/rmv.443.

[5]

S. M. BlowerE. N. Bodine and K. Grovit-Ferbas, Predicting the potential public health impact of Disease-Modifying HIV Vaccines in South Africa: The problem of subtypes, Curr Drug Targets Infect Disord, 5 (2005), 179-192. doi: 10.2174/1568005054201616.

[6]

S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int Stat Rev, 62 (1994), 229-243. doi: 10.2307/1403510.

[7]

C. BrowneH. Gulbudak and G. Webb, Modeling contact tracing in outbreaks with application to Ebola, J Theor Biol, 384 (2015), 33-49. doi: 10.1016/j.jtbi.2015.08.004.

[8]

S. Calvignac-Spencer, J. M. Schulze, F. Zickmann and B. Y. Renard, Clock rooting further demonstrates that Guinea 2014 EBOV is a member of the Zaïre Lineage, PLOS Currents Outbreaks (2014), Edition 1.

[9]

CDC, 2014 Ebola outbreak in West Africa -Case Counts, Centers for Disease Control and Prevention (2016), http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html.

[10]

CDC, Ebola survivors, Centers for Disease Control (2016), http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/survivors.html.

[11]

CDC, Ebola virus disease -signs and symptoms, Centers for Disease Control (2015), http://www.cdc.gov/vhf/ebola/symptoms/index.html.

[12]

CDC, Outbreak chronology: Ebola virus disease, Centers for Disease Control (2015), http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html.

[13]

G. ChowellN. W. HengartnerC. Castillo-ChavezP. W. Fenimore and J. M. Hyman, The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda, J Theor Biol, 229 (2004), 119-126. doi: 10.1016/j.jtbi.2004.03.006.

[14]

G. Chowell and M. Kiskowski, Modeling ring-vaccination strategies to control ebola virus disease epidemics, Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, (2016), 71-87.

[15]

A. ChristieG. J. Daview-WayneT. Cordier-LasalleD. J. BlackleyA. S. LaneyD. E. WilliamsS. A. ShindeM. BadioT. LoS. E. MateJ. T. LadnerM. R. WileyJ .R. KugelmanG. PalaciosM. R. HolbrookK. B. JanoskoE . de WitN. van DoremalenV. J. MunsterJ. PettittR. J. SchoeppL. VerhenneI. EvlampidouK. K. KollieS. B. SiehA. GasasiraF. BolayF. N. KatehT. G. Nyenswah and K. M. De Cock, Possible sexual transmission of Ebola virus-Liberia, 2015, MMWR Morb Mortal Wkly Rep, 64 (2015), 479-481.

[16]

CIA, The CIA World Factbook, Central Intelligence Agency, United States (2015), https://www.cia.gov/library/publications/resources/the-world-factbook/.

[17]

A. Cintrón-AriasC. Castillo-ChávezL. M. A. BettencourtA. L. Lloyd and H. T. Banks, The estimation of the effective reproduction number from disease outbreak data, Math Biosci Eng, 6 (2009), 261-282. doi: 10.3934/mbe.2009.6.261.

[18]

G. F. DeenB. KnustN. BroutetF. R. SesayP. FormentyC. RossA. E. ThorsonT. A. MassaquoiJ. E. MarrinanE. ErvinA. JambaiS. L. R. McDonaldK. BernsteinA. H. WurieM. S. DumbuyaN. AbadB. IdrissT. WiS. D. BennettT. DaviesF. K. EbrahimE. MeitesD. NaidooS. SmithA. BanerjeeB. R. EricksonA. BraultK. N. DurskiJ. WinterT. SealyS. T. NicholM. LamunuU. StröherO. Morgan and F. Sahr, Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors --Preliminary Report, N Engl J Med, (2015). doi: 10.1056/NEJMoa1511410.

[19]

E. de Wit, H. Feldmann and V. J. Munsters, Tackling Ebola: New insights into prophylactic and therapeutic intervention strategies, Genome Med 3(2011).

[20]

M. G. Dixon and I. J. Schafer, Ebola Viral disease outbreak --West Africa, 2014, MMRW Morb Mortal Wkly Rep, 63 (2014), 548-551.

[21]

T. S. Do and Y. S. Lee, Modeling the spread of Ebola, Osong Public Health and Research Perspectives, 7 (2016), 43-48. doi: 10.1016/j.phrp.2015.12.012.

[22]

S. F. DowellR. MukunuT. G. KsiazekA. S. KhanP. E. Rollin and C. J. Peters, Transmission of Ebola hemorrhagic fever: A study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995, J Infect Dis, 179 (1999), S87-S91. doi: 10.1086/514284.

[23]

P. van den Driessche and J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[24]

M. Eichner and K. Dietz, Transmission potential of smallpox: Estimates based on detailed data from an outbreak, Amer Journal of Epidem, 158 (2003), 110-117. doi: 10.1093/aje/kwg103.

[25]

M. EichnerS. F. Dowell and N. Firese, Incubation period of ebola hemorrhagic virus subtype zaire, Osong Public Heath Res Perspect, 2 (2011), 3-7. doi: 10.1016/j.phrp.2011.04.001.

[26]

D. Fisman, E. Khoo and A. Tuite, Early epidemic dynamics of the West African 2014 Ebola outbreak: Estimates derived with a simple two-parameter model PLOS Currents Outbreaks (2014), Edition 1. doi: 10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571.

[27]

T. C. Germann, K. Kadau, I. M. Longini Jr. and C. A. Macken, Mitigation strategies for pandemic influenza in the United States PNAS (2006). doi: 10.1073/pnas.0601266103.

[28]

R. F. GraisM. J. FerrariC. DubrayO. N. BjornstadG. T. GrenfellA. DjiboF. Fermon and P. J. Guerin, Estimating transmission intensity for a measles epidemic in Niamey, Niger: Lessons for intervention, Transactions of the Royal Society of Tropical Medicine and Hygiene, 100 (2006), 867-873. doi: 10.1016/j.trstmh.2005.10.014.

[29]

J. M. HeffernanR. J. Smith and L. M. Wahl, Perspectives on the basic reproductive ratio, J Roy Soc Interface, 2 (2005), 281-293.

[30]

J. M. Heffernan and M. J. Keeling, Implications of vaccination and waning immunity, Proc R Soc B, 276 (2009), 2071-2080. doi: 10.1098/rspb.2009.0057.

[31]

A. M. Henao-RestrepoA. CamachoI. M. LonginiC. H. WatsonW. J. EdmundsM. EggerM. W. CarrollN. E. DeanI. DiattaM. DoumbiaB. DraguezS. DuraffourG. EnwereR. GraisS. GuntherP.-S. GsellS. HossmannS. V. WatleM. K. KondéS. KéïtaS. KoneE. KuismaM. M. LevineS. MandalT. MaugetG. NorheimX. RiverosA. SoumahS. TrelleA. S. VicariJ.-A. Rottingen and M.-P. Kieny, Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!), The Lancet, 389 (2017), 505-518. doi: 10.1016/S0140-6736(16)32621-6.

[32]

A. M. Henao-RestrepoI. M. LonginiM. EggerN. E. DeanW. J. EdmundsA. CamachoM. W. CarrollM. DoumbiaB. DraguezS. DuraffourG. EnwereR. GraisS. GuntherS. HossmannM. K. KondéS. KoneE. KuismaM. M. LevineS. MandalG. NorheimX. RiverosA. SoumahS. TrelleA. S. VicariC. H. WatsonS. KéïtaM. P. Kieny and J.-A. Rottingen, Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: Interim results from the Guinea ring vaccination cluster-randomised trial, The Lancet, 386 (2015), 857-866. doi: 10.1016/S0140-6736(15)61117-5.

[33]

B. S. Hewlett and R. P. Amola, Cultural contexts of Ebola in Northern Uganda, Emerg Infect Dis, 9 (2003), 1242-1248. doi: 10.3201/eid0910.020493.

[34]

M. IbrahimL. AlexanderC. Shy and S. Farr, UNC Department of Epidemiology: Incidence vs. Prevalence, Epidemiologic Research & Information Center Notebook, (1999), 1-5.

[35]

A. Kahn, M. Naveed, M. Dur-e-Ahmad and M. Imran, Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leone Infect Dis Poverty 4(2015), p13. doi: 10.1186/s40249-015-0043-3.

[36]

M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals Princeton University Press, 2008.

[37]

M. J. KeelingM. E. J. WoolhouseR. M. MayG. Davies and B. T. Grenfell, Modelling vaccination strategies against foot-and-mouth disease, Nature, 421 (2003), 136-142. doi: 10.1038/nature01343.

[38]

Y. KinfuM. R. Dal PozH. Mercer and D. B. Evans, The health worker shortage in Africa: Are enough physicians and nurses being trained?, Bull World Health Organ, 87 (2009), 225-230. doi: 10.2471/BLT.08.051599.

[39]

N. M. Kudoyarova-ZubavicheneN. N. SergeyevA. A. Chepurnov and S. V. Netesov, Preparation and Use of Hyperimmune Serum for Prophylaxis and Therapy of Ebola Virus Infections, J Infect Dis, 179 (1999), 218-223. doi: 10.1086/514294.

[40]

J. LegrandR. F. BraisP. Y. BoelleA. J. Valleron and A. Flahault, Understanding the dynamics of Ebola epidemics, Epidemiol Infect, 135 (2007), 610-621.

[41]

E. M. LeroyP. RouquetP. FormentyS. SouquiereA. KilbourneJ.-M. FromentM. BermejoS. SmitW. KareshR. SwanepoelS. R. Zaki and P. E. Rollin, Multiple Ebola virus transmission events and rapid decline of Central African wildlife, Science, 303 (2004), 387-390. doi: 10.1126/science.1092528.

[42]

Y. LiuJ. WangS. LiuJ. DuL. WangW. GuY. XuS. ZuoE. Xu and Z. An, Introduction of inactivated poliovirus vaccine leading into the polio eradication endgame strategic plan; Hangzhou, China, 2010-2014, Vaccine, 35 (2017), 1281-1286. doi: 10.1016/j.vaccine.2017.01.034.

[43]

S. MarinoI. B. HogueC. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J Theor Biol, 254 (2008), 178-196. doi: 10.1016/j.jtbi.2008.04.011.

[44]

M. D. McKayR. J. Beckman and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979), 239-245. doi: 10.2307/1268522.

[45]

M. I. MeltzerC. Y. AtkinsS. SantibanezB. KnustB. W. PetersenE. D. ErvinS. T. NicholI. K. Damon and M. L. Washington, Estimating the future number of cases in the Ebola Epidemic --Liberia and Sierra Leone, 2014-2015, MMWR Morb Mortal Wkly Rep, (2014).

[46]

S. Merler, M. Ajelli, L. Fumanelli, S. Parlamento, A. Pastore y Piontti, N. E. Dean, G. Putoto, D. Carraro, I. M. Longini Jr. , M. E. Halloran and A. Vespignani, Containing Ebola at the source with ring vaccination PLOS Neglected Tropical Diseases 10(2016), e0005093. doi: 10.1371/journal.pntd.0005093.

[47]

J. MüllerB. Schönfisch and M. Kirkilionis, Ring vaccination, Journal of Mathematical Biology, 41 (2000), 143-171. doi: 10.1007/s002850070003.

[48]

Medicins Sans Frontieres/Doctors Without Borders, Ebola (2015), http://www.doctorswithoutborders.org/our-work/medical-issues/ebola.

[49]

H. Nishiura, Correcting the actual reproduction number: A simple method to estimate $R_0$ from early epidemic growth data, Int J Environ Res Public Health, 7 (2010), 291-302. doi: 10.3390/ijerph7010291.

[50]

A. PandeyK. E. AtkinsJ. MedlockN. WenzelJ. P. TownsendJ. E. ChildsT. G. NyenswahM. L. Ndeffo-Mbah and A. P. Galvani, Strategies for containing Ebola in West Africa, Science, 346 (2014), 991-995.

[51]

J. PrescottT. BushmakerR. FischerK. MiazgowiczS. Judson and V. J. Munster, Postmortem stability of Ebola virus, Emerg Infect Dis, 21 (2015), 856-859. doi: 10.3201/eid2105.150041.

[52]

C. M. Rivers, E. T. Lofgren, M. Marathe, S. Eubank and B. L. Lewis, Modeling the impact of interventions on an epidemic of Ebola in sierra leone and liberia PLOS Currents Outbreaks (2014), Edition 2. doi: 10.1371/currents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c.

[53]

D. Salem and R. Smith?, A mathematical model of ebola virus disease: Using sensitivity analysis to determine effective intervention targets, Proceedings of SummerSim-SCSC, (2016), 16-23.

[54]

E. E. Salpeter and S. R. Salpeter, Mathematical mode for the epidemiology of tuberculosis, with estimates of the reproductive number and infection-delay function, Am J Epidemiol, 142 (1998), 398-406.

[55]

R. Smith?, Modelling Disease Ecology with Mathematics American Institute of Mathematical Sciences, 2008.

[56]

L. R. Stanberry, Clinical trials of prophylactic and therapeutic herpes simplex virus vaccines, Herpes, (2004), 161A-169A.

[57]

United Nations, Making A Difference the Global Ebola Response: Outlook 2015 United Nations, (2015), http://ebolaresponse.un.org/outlook-2015.

[58]

United Nations Global Ebola Response, UN Mission for Ebola Emergency Response (UNMEER) United Nations, (2015), http://ebolaresponse.un.org/un-mission-ebola-emergency-response-unmeer.

[59]

G. Webb, C. Browne, X. Huo, O. Seydi, M. Seydi and P. Magal, A model of the 2014 Ebola epidemic in West Africa with contact tracing PLoS Currents Outbreaks (2015), Edition 1. doi: 10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a.

[60]

G. Webb and C. Browne, A model of the Ebola epidemics in West Africa incorporating age of infection, J Biol Dyn, 10 (2016), 18-30. doi: 10.1080/17513758.2015.1090632.

[61]

WHO, WHO coordinating vaccination of contacts to contain Ebola flare-up in Guinea, World Health Organization, (2016), http://www.who.int/features/2016/ebola-contacts-vaccination/en/.

[62]

WHO, One year into the Ebola epidemic: A deadly tenacious and unforgiving virus, World Health Organization, (2015), http://www.who.int/csr/disease/ebola/one-year-report/introduction/en/.

[63]

WHO, Ebola outbreak 2014 -present: How the outbreak and WHO's response unfolded, World Health Organization, (2016), http://who.int/csr/disease/ebola/response/phases/en/.

[64]

WHO, Ebola virus disease, World Health Organization, (2015), http://www.who.int/mediacentre/factsheets/fs103/en/.

[65]

WHO, WHO: Ebola Response Roadmap World Health Organization, (2014), http://www.who.int/csr/resources/publications/ebola/response-roadmap/en/.

[66]

WHO, Ebola Virus Disease Outbreak Response Plan in West Africa World Health Organization, (2014), http://www.who.int/mediacentre/factsheets/fs103/en/.

[67]

WHO Ebola Response Team, Ebola Virus Disease in West Africa -The First 9 Months of the Epidemic and Forward Projections, N Engl J Med, 371 (2014), 1481-1495.

show all references

References:
[1]

M. Ajelli, S. Merler, L. Fumanelli, A. Pastore, Y. Piontti, N. E. Dean, I. M. Longini Jr. , M. E. Halloran and A. Vespignani, Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: A computational modeling analysis BMC Medicine 14(2016), p130. doi: 10.1186/s12916-016-0678-3.

[2]

C. L. Althaus, Estimating the reproduction number of ebola virus (EBOV) during the 2014 outbreak in West Africa PLOS Currents Outbreaks (2014), Edition 1. doi: 10.1371/currents.outbreaks.91afb5e0f279e7f29e7056095255b288.

[3]

E. J. AmundsenH. StigumJ. A. Rottingen and O. O. Aalen, Definition and estimation of an actual reproduction number describing past infectious disease transmission: application to HIV epidemics among homosexual men in Denmark, Norway, and Sweden, Epidemiol Infect, 132 (2004), 1139-1149. doi: 10.1017/S0950268804002997.

[4]

D. Bernoulli and S. Blower, An attempt at a new analysis of the mortality caused by smallpox and of the advantages of inoculation to prevent it, Reviews in Medical Virology, 14 (2004), 275-288. doi: 10.1002/rmv.443.

[5]

S. M. BlowerE. N. Bodine and K. Grovit-Ferbas, Predicting the potential public health impact of Disease-Modifying HIV Vaccines in South Africa: The problem of subtypes, Curr Drug Targets Infect Disord, 5 (2005), 179-192. doi: 10.2174/1568005054201616.

[6]

S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV model, as an example, Int Stat Rev, 62 (1994), 229-243. doi: 10.2307/1403510.

[7]

C. BrowneH. Gulbudak and G. Webb, Modeling contact tracing in outbreaks with application to Ebola, J Theor Biol, 384 (2015), 33-49. doi: 10.1016/j.jtbi.2015.08.004.

[8]

S. Calvignac-Spencer, J. M. Schulze, F. Zickmann and B. Y. Renard, Clock rooting further demonstrates that Guinea 2014 EBOV is a member of the Zaïre Lineage, PLOS Currents Outbreaks (2014), Edition 1.

[9]

CDC, 2014 Ebola outbreak in West Africa -Case Counts, Centers for Disease Control and Prevention (2016), http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html.

[10]

CDC, Ebola survivors, Centers for Disease Control (2016), http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/survivors.html.

[11]

CDC, Ebola virus disease -signs and symptoms, Centers for Disease Control (2015), http://www.cdc.gov/vhf/ebola/symptoms/index.html.

[12]

CDC, Outbreak chronology: Ebola virus disease, Centers for Disease Control (2015), http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html.

[13]

G. ChowellN. W. HengartnerC. Castillo-ChavezP. W. Fenimore and J. M. Hyman, The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda, J Theor Biol, 229 (2004), 119-126. doi: 10.1016/j.jtbi.2004.03.006.

[14]

G. Chowell and M. Kiskowski, Modeling ring-vaccination strategies to control ebola virus disease epidemics, Mathematical and Statistical Modeling for Emerging and Re-emerging Infectious Diseases, (2016), 71-87.

[15]

A. ChristieG. J. Daview-WayneT. Cordier-LasalleD. J. BlackleyA. S. LaneyD. E. WilliamsS. A. ShindeM. BadioT. LoS. E. MateJ. T. LadnerM. R. WileyJ .R. KugelmanG. PalaciosM. R. HolbrookK. B. JanoskoE . de WitN. van DoremalenV. J. MunsterJ. PettittR. J. SchoeppL. VerhenneI. EvlampidouK. K. KollieS. B. SiehA. GasasiraF. BolayF. N. KatehT. G. Nyenswah and K. M. De Cock, Possible sexual transmission of Ebola virus-Liberia, 2015, MMWR Morb Mortal Wkly Rep, 64 (2015), 479-481.

[16]

CIA, The CIA World Factbook, Central Intelligence Agency, United States (2015), https://www.cia.gov/library/publications/resources/the-world-factbook/.

[17]

A. Cintrón-AriasC. Castillo-ChávezL. M. A. BettencourtA. L. Lloyd and H. T. Banks, The estimation of the effective reproduction number from disease outbreak data, Math Biosci Eng, 6 (2009), 261-282. doi: 10.3934/mbe.2009.6.261.

[18]

G. F. DeenB. KnustN. BroutetF. R. SesayP. FormentyC. RossA. E. ThorsonT. A. MassaquoiJ. E. MarrinanE. ErvinA. JambaiS. L. R. McDonaldK. BernsteinA. H. WurieM. S. DumbuyaN. AbadB. IdrissT. WiS. D. BennettT. DaviesF. K. EbrahimE. MeitesD. NaidooS. SmithA. BanerjeeB. R. EricksonA. BraultK. N. DurskiJ. WinterT. SealyS. T. NicholM. LamunuU. StröherO. Morgan and F. Sahr, Ebola RNA Persistence in Semen of Ebola Virus Disease Survivors --Preliminary Report, N Engl J Med, (2015). doi: 10.1056/NEJMoa1511410.

[19]

E. de Wit, H. Feldmann and V. J. Munsters, Tackling Ebola: New insights into prophylactic and therapeutic intervention strategies, Genome Med 3(2011).

[20]

M. G. Dixon and I. J. Schafer, Ebola Viral disease outbreak --West Africa, 2014, MMRW Morb Mortal Wkly Rep, 63 (2014), 548-551.

[21]

T. S. Do and Y. S. Lee, Modeling the spread of Ebola, Osong Public Health and Research Perspectives, 7 (2016), 43-48. doi: 10.1016/j.phrp.2015.12.012.

[22]

S. F. DowellR. MukunuT. G. KsiazekA. S. KhanP. E. Rollin and C. J. Peters, Transmission of Ebola hemorrhagic fever: A study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995, J Infect Dis, 179 (1999), S87-S91. doi: 10.1086/514284.

[23]

P. van den Driessche and J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[24]

M. Eichner and K. Dietz, Transmission potential of smallpox: Estimates based on detailed data from an outbreak, Amer Journal of Epidem, 158 (2003), 110-117. doi: 10.1093/aje/kwg103.

[25]

M. EichnerS. F. Dowell and N. Firese, Incubation period of ebola hemorrhagic virus subtype zaire, Osong Public Heath Res Perspect, 2 (2011), 3-7. doi: 10.1016/j.phrp.2011.04.001.

[26]

D. Fisman, E. Khoo and A. Tuite, Early epidemic dynamics of the West African 2014 Ebola outbreak: Estimates derived with a simple two-parameter model PLOS Currents Outbreaks (2014), Edition 1. doi: 10.1371/currents.outbreaks.89c0d3783f36958d96ebbae97348d571.

[27]

T. C. Germann, K. Kadau, I. M. Longini Jr. and C. A. Macken, Mitigation strategies for pandemic influenza in the United States PNAS (2006). doi: 10.1073/pnas.0601266103.

[28]

R. F. GraisM. J. FerrariC. DubrayO. N. BjornstadG. T. GrenfellA. DjiboF. Fermon and P. J. Guerin, Estimating transmission intensity for a measles epidemic in Niamey, Niger: Lessons for intervention, Transactions of the Royal Society of Tropical Medicine and Hygiene, 100 (2006), 867-873. doi: 10.1016/j.trstmh.2005.10.014.

[29]

J. M. HeffernanR. J. Smith and L. M. Wahl, Perspectives on the basic reproductive ratio, J Roy Soc Interface, 2 (2005), 281-293.

[30]

J. M. Heffernan and M. J. Keeling, Implications of vaccination and waning immunity, Proc R Soc B, 276 (2009), 2071-2080. doi: 10.1098/rspb.2009.0057.

[31]

A. M. Henao-RestrepoA. CamachoI. M. LonginiC. H. WatsonW. J. EdmundsM. EggerM. W. CarrollN. E. DeanI. DiattaM. DoumbiaB. DraguezS. DuraffourG. EnwereR. GraisS. GuntherP.-S. GsellS. HossmannS. V. WatleM. K. KondéS. KéïtaS. KoneE. KuismaM. M. LevineS. MandalT. MaugetG. NorheimX. RiverosA. SoumahS. TrelleA. S. VicariJ.-A. Rottingen and M.-P. Kieny, Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!), The Lancet, 389 (2017), 505-518. doi: 10.1016/S0140-6736(16)32621-6.

[32]

A. M. Henao-RestrepoI. M. LonginiM. EggerN. E. DeanW. J. EdmundsA. CamachoM. W. CarrollM. DoumbiaB. DraguezS. DuraffourG. EnwereR. GraisS. GuntherS. HossmannM. K. KondéS. KoneE. KuismaM. M. LevineS. MandalG. NorheimX. RiverosA. SoumahS. TrelleA. S. VicariC. H. WatsonS. KéïtaM. P. Kieny and J.-A. Rottingen, Efficacy and effectiveness of an rVSV-vectored vaccine expressing Ebola surface glycoprotein: Interim results from the Guinea ring vaccination cluster-randomised trial, The Lancet, 386 (2015), 857-866. doi: 10.1016/S0140-6736(15)61117-5.

[33]

B. S. Hewlett and R. P. Amola, Cultural contexts of Ebola in Northern Uganda, Emerg Infect Dis, 9 (2003), 1242-1248. doi: 10.3201/eid0910.020493.

[34]

M. IbrahimL. AlexanderC. Shy and S. Farr, UNC Department of Epidemiology: Incidence vs. Prevalence, Epidemiologic Research & Information Center Notebook, (1999), 1-5.

[35]

A. Kahn, M. Naveed, M. Dur-e-Ahmad and M. Imran, Estimating the basic reproductive ratio for the Ebola outbreak in Liberia and Sierra Leone Infect Dis Poverty 4(2015), p13. doi: 10.1186/s40249-015-0043-3.

[36]

M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals Princeton University Press, 2008.

[37]

M. J. KeelingM. E. J. WoolhouseR. M. MayG. Davies and B. T. Grenfell, Modelling vaccination strategies against foot-and-mouth disease, Nature, 421 (2003), 136-142. doi: 10.1038/nature01343.

[38]

Y. KinfuM. R. Dal PozH. Mercer and D. B. Evans, The health worker shortage in Africa: Are enough physicians and nurses being trained?, Bull World Health Organ, 87 (2009), 225-230. doi: 10.2471/BLT.08.051599.

[39]

N. M. Kudoyarova-ZubavicheneN. N. SergeyevA. A. Chepurnov and S. V. Netesov, Preparation and Use of Hyperimmune Serum for Prophylaxis and Therapy of Ebola Virus Infections, J Infect Dis, 179 (1999), 218-223. doi: 10.1086/514294.

[40]

J. LegrandR. F. BraisP. Y. BoelleA. J. Valleron and A. Flahault, Understanding the dynamics of Ebola epidemics, Epidemiol Infect, 135 (2007), 610-621.

[41]

E. M. LeroyP. RouquetP. FormentyS. SouquiereA. KilbourneJ.-M. FromentM. BermejoS. SmitW. KareshR. SwanepoelS. R. Zaki and P. E. Rollin, Multiple Ebola virus transmission events and rapid decline of Central African wildlife, Science, 303 (2004), 387-390. doi: 10.1126/science.1092528.

[42]

Y. LiuJ. WangS. LiuJ. DuL. WangW. GuY. XuS. ZuoE. Xu and Z. An, Introduction of inactivated poliovirus vaccine leading into the polio eradication endgame strategic plan; Hangzhou, China, 2010-2014, Vaccine, 35 (2017), 1281-1286. doi: 10.1016/j.vaccine.2017.01.034.

[43]

S. MarinoI. B. HogueC. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J Theor Biol, 254 (2008), 178-196. doi: 10.1016/j.jtbi.2008.04.011.

[44]

M. D. McKayR. J. Beckman and W. J. Conover, A comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979), 239-245. doi: 10.2307/1268522.

[45]

M. I. MeltzerC. Y. AtkinsS. SantibanezB. KnustB. W. PetersenE. D. ErvinS. T. NicholI. K. Damon and M. L. Washington, Estimating the future number of cases in the Ebola Epidemic --Liberia and Sierra Leone, 2014-2015, MMWR Morb Mortal Wkly Rep, (2014).

[46]

S. Merler, M. Ajelli, L. Fumanelli, S. Parlamento, A. Pastore y Piontti, N. E. Dean, G. Putoto, D. Carraro, I. M. Longini Jr. , M. E. Halloran and A. Vespignani, Containing Ebola at the source with ring vaccination PLOS Neglected Tropical Diseases 10(2016), e0005093. doi: 10.1371/journal.pntd.0005093.

[47]

J. MüllerB. Schönfisch and M. Kirkilionis, Ring vaccination, Journal of Mathematical Biology, 41 (2000), 143-171. doi: 10.1007/s002850070003.

[48]

Medicins Sans Frontieres/Doctors Without Borders, Ebola (2015), http://www.doctorswithoutborders.org/our-work/medical-issues/ebola.

[49]

H. Nishiura, Correcting the actual reproduction number: A simple method to estimate $R_0$ from early epidemic growth data, Int J Environ Res Public Health, 7 (2010), 291-302. doi: 10.3390/ijerph7010291.

[50]

A. PandeyK. E. AtkinsJ. MedlockN. WenzelJ. P. TownsendJ. E. ChildsT. G. NyenswahM. L. Ndeffo-Mbah and A. P. Galvani, Strategies for containing Ebola in West Africa, Science, 346 (2014), 991-995.

[51]

J. PrescottT. BushmakerR. FischerK. MiazgowiczS. Judson and V. J. Munster, Postmortem stability of Ebola virus, Emerg Infect Dis, 21 (2015), 856-859. doi: 10.3201/eid2105.150041.

[52]

C. M. Rivers, E. T. Lofgren, M. Marathe, S. Eubank and B. L. Lewis, Modeling the impact of interventions on an epidemic of Ebola in sierra leone and liberia PLOS Currents Outbreaks (2014), Edition 2. doi: 10.1371/currents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c.

[53]

D. Salem and R. Smith?, A mathematical model of ebola virus disease: Using sensitivity analysis to determine effective intervention targets, Proceedings of SummerSim-SCSC, (2016), 16-23.

[54]

E. E. Salpeter and S. R. Salpeter, Mathematical mode for the epidemiology of tuberculosis, with estimates of the reproductive number and infection-delay function, Am J Epidemiol, 142 (1998), 398-406.

[55]

R. Smith?, Modelling Disease Ecology with Mathematics American Institute of Mathematical Sciences, 2008.

[56]

L. R. Stanberry, Clinical trials of prophylactic and therapeutic herpes simplex virus vaccines, Herpes, (2004), 161A-169A.

[57]

United Nations, Making A Difference the Global Ebola Response: Outlook 2015 United Nations, (2015), http://ebolaresponse.un.org/outlook-2015.

[58]

United Nations Global Ebola Response, UN Mission for Ebola Emergency Response (UNMEER) United Nations, (2015), http://ebolaresponse.un.org/un-mission-ebola-emergency-response-unmeer.

[59]

G. Webb, C. Browne, X. Huo, O. Seydi, M. Seydi and P. Magal, A model of the 2014 Ebola epidemic in West Africa with contact tracing PLoS Currents Outbreaks (2015), Edition 1. doi: 10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a.

[60]

G. Webb and C. Browne, A model of the Ebola epidemics in West Africa incorporating age of infection, J Biol Dyn, 10 (2016), 18-30. doi: 10.1080/17513758.2015.1090632.

[61]

WHO, WHO coordinating vaccination of contacts to contain Ebola flare-up in Guinea, World Health Organization, (2016), http://www.who.int/features/2016/ebola-contacts-vaccination/en/.

[62]

WHO, One year into the Ebola epidemic: A deadly tenacious and unforgiving virus, World Health Organization, (2015), http://www.who.int/csr/disease/ebola/one-year-report/introduction/en/.

[63]

WHO, Ebola outbreak 2014 -present: How the outbreak and WHO's response unfolded, World Health Organization, (2016), http://who.int/csr/disease/ebola/response/phases/en/.

[64]

WHO, Ebola virus disease, World Health Organization, (2015), http://www.who.int/mediacentre/factsheets/fs103/en/.

[65]

WHO, WHO: Ebola Response Roadmap World Health Organization, (2014), http://www.who.int/csr/resources/publications/ebola/response-roadmap/en/.

[66]

WHO, Ebola Virus Disease Outbreak Response Plan in West Africa World Health Organization, (2014), http://www.who.int/mediacentre/factsheets/fs103/en/.

[67]

WHO Ebola Response Team, Ebola Virus Disease in West Africa -The First 9 Months of the Epidemic and Forward Projections, N Engl J Med, 371 (2014), 1481-1495.

Figure 1.  Histogram of mortality rates for the 19 outbreaks of EVD that have had more than 5 reported cases (excluding the 2014 West Africa Outbreak); outbreaks of Zaire ebolavirus are shown in solid red while all other outbreaks are shown in cross-hatched blue. Data taken from [12].
Figure 2.  Timeline showing the implementation of different control strategies over the course of the outbreak. The date for time $t=0$ is 30 days prior to the initial date that the CDC began recording outbreak data.
Figure 3.  Flow diagram of the model given in System (1). Shaded compartments indicate high risk of exposure (red), low risk of exposure (orange), and ability to transmit EVD (yellow). Green arrows indicate movement into the population, blue arrows indicate background death, and dashed line arrows indicate vaccination.
Figure 4.  Model (solid curve) fit to CDC data (points) [9] of cumulative infections (A) and deaths (B) over the five distinct intervention periods given in Figure 2.
Figure 5.  $\mathcal{R}_A(t)$ for response periods $[0,95]$ (red), $[95,202]$ (blue), $[202,248]$ (orange), $[248,460]$ (green), and $[460,647]$ (purple).
Figure 6.  Matrix plots displaying the sensitivity of the parameters $\alpha$, $x$, $\nu$, and $\rho_L$ to the cumulative number of infected individuals (CI) during a ring vaccination scenario with $\epsilon=1$, $\rho_H={\raise0.5ex\hbox{$\scriptstyle 0.95$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 21$}}$, and $\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.99$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 7$}}$.
Table 1.  Parameters and values used in the model.
Parameter Units Value Description Source
Fitted Parameters $\beta_1^H$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from infectious individuals to high risk susceptible individuals
$\beta_1^L$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from infectious individuals to low risk susceptible individuals
$\beta_1^W$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from infectious individuals to susceptible healthcare workers
$\beta_2^H$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from deceased individuals to high risk susceptible individuals
$\beta_2^L$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from deceased individuals to low risk susceptible individuals
$\beta_2^W$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from deceased individuals to susceptible healthcare workers
$\beta_{3}$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from recovering, still infectious individuals to low risk individuals
$\alpha$ -- See Table 3 proportion of symptomatic individuals who go to hospitals
$\nu$ -- See Table 3 scaling constant where $1-\nu$ represents effectiveness of healthcare workers in reducing EVD death rate
Vax $\epsilon$ -- $1$ proportion of individuals in whom the vaccine is effective [31]
$\rho_L$ -- See Section 5 proportion of low susceptible population ($S_L$) who get vaccinated per year
$\rho_H$ -- See Section 5 proportion of high susceptible population ($S_H$) who get vaccinated per year
$\hat{\rho}$ -- See Section 5 proportion of healthcare workers ($S_W$) who get vaccinated per year
$\psi$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See section 3 migration rate of healthcare workers into the population
$\mu$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ ${\raise0.5ex\hbox{$\scriptstyle 11.03$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle (1,000)(365)$}}$ natural death rate per day per 1,000 individuals [16]
$\Omega$ ${\raise0.5ex\hbox{$\scriptstyle people$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ ${\raise0.5ex\hbox{$\scriptstyle 37.4$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle (1,000)(365)$}}$ natural birth rate per day per 1,000 individuals [16]
$\kappa$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 5.5$}}$ rate at which individuals become symptomatic and infectious [45]
${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle \gamma$}}$ $days$ $9$ infectious period of individuals who are not in hospitals [50]
${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle \hat{\gamma}$}}$ $days$ $7$ infectious period of individuals who are in hospitals
$\delta$ -- $0.73$ proportion of individuals who die from Ebola [12]
$\phi$ $people$ $0.00039N(0)$ number of healthcare workers in the population prior to outbreak [16]
$\lambda$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 5$}}$ burial rate of deceased individuals who were not in hospitals
$\hat{\lambda}$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}$ burial rate of deceased individuals who were in hospitals [50]
$\eta$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 150$}}$ rate at which recovering and still infectious individuals become non-infectious [18,15]
$\sigma_H$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ $\kappa$ rate at which individuals move from low risk to high risk susceptible populations
$\sigma_L$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ $1/({\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle \gamma$}}+{\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle \lambda$}})$ rate at which individuals move from high risk to low risk susceptible populations
Parameter Units Value Description Source
Fitted Parameters $\beta_1^H$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from infectious individuals to high risk susceptible individuals
$\beta_1^L$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from infectious individuals to low risk susceptible individuals
$\beta_1^W$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from infectious individuals to susceptible healthcare workers
$\beta_2^H$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from deceased individuals to high risk susceptible individuals
$\beta_2^L$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from deceased individuals to low risk susceptible individuals
$\beta_2^W$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from deceased individuals to susceptible healthcare workers
$\beta_{3}$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See Table 3 transmission rate from recovering, still infectious individuals to low risk individuals
$\alpha$ -- See Table 3 proportion of symptomatic individuals who go to hospitals
$\nu$ -- See Table 3 scaling constant where $1-\nu$ represents effectiveness of healthcare workers in reducing EVD death rate
Vax $\epsilon$ -- $1$ proportion of individuals in whom the vaccine is effective [31]
$\rho_L$ -- See Section 5 proportion of low susceptible population ($S_L$) who get vaccinated per year
$\rho_H$ -- See Section 5 proportion of high susceptible population ($S_H$) who get vaccinated per year
$\hat{\rho}$ -- See Section 5 proportion of healthcare workers ($S_W$) who get vaccinated per year
$\psi$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ See section 3 migration rate of healthcare workers into the population
$\mu$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ ${\raise0.5ex\hbox{$\scriptstyle 11.03$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle (1,000)(365)$}}$ natural death rate per day per 1,000 individuals [16]
$\Omega$ ${\raise0.5ex\hbox{$\scriptstyle people$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ ${\raise0.5ex\hbox{$\scriptstyle 37.4$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle (1,000)(365)$}}$ natural birth rate per day per 1,000 individuals [16]
$\kappa$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 5.5$}}$ rate at which individuals become symptomatic and infectious [45]
${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle \gamma$}}$ $days$ $9$ infectious period of individuals who are not in hospitals [50]
${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle \hat{\gamma}$}}$ $days$ $7$ infectious period of individuals who are in hospitals
$\delta$ -- $0.73$ proportion of individuals who die from Ebola [12]
$\phi$ $people$ $0.00039N(0)$ number of healthcare workers in the population prior to outbreak [16]
$\lambda$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 5$}}$ burial rate of deceased individuals who were not in hospitals
$\hat{\lambda}$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 2$}}$ burial rate of deceased individuals who were in hospitals [50]
$\eta$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 150$}}$ rate at which recovering and still infectious individuals become non-infectious [18,15]
$\sigma_H$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ $\kappa$ rate at which individuals move from low risk to high risk susceptible populations
$\sigma_L$ ${\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle days$}}$ $1/({\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle \gamma$}}+{\raise0.5ex\hbox{$\scriptstyle 1$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle \lambda$}})$ rate at which individuals move from high risk to low risk susceptible populations
Table 3.  Values of fitted parameters for each response period. The range of the uniform distribution for each parameter for each response period is shown above the fitted parameter value.
$\mathbf{t\!\in\![0,95]}$ $\mathbf{t\!\in\![95,202]}$ $\mathbf{t\!\in\![202,248]}$ $\mathbf{t\!\in\![248,460]}$ $\mathbf{t\!\in\![460,647]}$
$\mathbf{\beta^H_1}$ $[0.45,0.80]$ $[0.30,0.80]$ $[0.30,0.80]$ $[0.20,0.80]$ $[0.20,0.80]$
$0.651$ $0.441$ $0.336$ $0.586$ $0.640$
$\mathbf{\beta^H_2}$ $[0.45,0.80]$ $[0.30,0.80]$ $[0.30,0.80]$ $[0.20,0.80]$ $[0.20,0.80]$
$0.471$ $0.437$ $0.671$ $0.572$ $0.376$
$\mathbf{\beta^L_1}$ $[0.10,0.45]$ $[0.10,0.30]$ $[0.10,0.30]$ $[0.01,0.20]$ $[0.01,0.20]$
$0.163$ $0.263$ $0.212$ $0.198$ $0.182$
$\mathbf{\beta^L_2}$ $[0.10,0.45]$ $[0.10,0.30]$ $[0.10,0.30]$ $[0.01,0.20]$ $[0.01,0.20]$
$0.294$ $0.139$ $0.204$ $0.143$ $0.146$
$\mathbf{\beta^W_1}$ $[0.10,0.80]$ $[0.10,0.80]$ $[0.10,0.80]$ $[0.01,0.80]$ $[0.01,0.80]$
$0.436$ $0.319$ $0.296$ $0.356$ $0.532$
$\mathbf{\beta^W_2}$ $[0.10,0.80]$ $[0.10,0.80]$ $[0.10,0.80]$ $[0.01,0.80]$ $[0.01,0.80]$
$0.720$ $0.753$ $0.325$ $0.348$ $0.322$
$\mathbf{\beta_3}$ $[1 \times 10^{-7},\,0.001]$ $[1 \times 10^{-7},\,0.001]$ $[1 \times 10^{-7},\,0.001]$ $[1 \times 10^{-7},\,0.001]$ $[1 \times 10^{-7},\,0.001]$
$0.000765$ $0.0000861$ $0.000961$ $0.000596$ $0.000996$
$\mathbf{\alpha}$ $[0.25,0.75]$ $[0.25,0.75]$ $[0.25,0.75]$ $[0.25,0.75]$ $[0.25,0.75]$
$0.407$ $0.572$ $0.744$ $0.659$ $0.723$
$\mathbf{\nu}$ $[0.0,1.0]$ $[0.0,1.0]$ $[0.0,1.0]$ $[0.0,1.0]$ $[0.0,1.0]$
$0.691$ $0.019$ $0.022$ $0.483$ $0.156$
$\mathbf{t\!\in\![0,95]}$ $\mathbf{t\!\in\![95,202]}$ $\mathbf{t\!\in\![202,248]}$ $\mathbf{t\!\in\![248,460]}$ $\mathbf{t\!\in\![460,647]}$
$\mathbf{\beta^H_1}$ $[0.45,0.80]$ $[0.30,0.80]$ $[0.30,0.80]$ $[0.20,0.80]$ $[0.20,0.80]$
$0.651$ $0.441$ $0.336$ $0.586$ $0.640$
$\mathbf{\beta^H_2}$ $[0.45,0.80]$ $[0.30,0.80]$ $[0.30,0.80]$ $[0.20,0.80]$ $[0.20,0.80]$
$0.471$ $0.437$ $0.671$ $0.572$ $0.376$
$\mathbf{\beta^L_1}$ $[0.10,0.45]$ $[0.10,0.30]$ $[0.10,0.30]$ $[0.01,0.20]$ $[0.01,0.20]$
$0.163$ $0.263$ $0.212$ $0.198$ $0.182$
$\mathbf{\beta^L_2}$ $[0.10,0.45]$ $[0.10,0.30]$ $[0.10,0.30]$ $[0.01,0.20]$ $[0.01,0.20]$
$0.294$ $0.139$ $0.204$ $0.143$ $0.146$
$\mathbf{\beta^W_1}$ $[0.10,0.80]$ $[0.10,0.80]$ $[0.10,0.80]$ $[0.01,0.80]$ $[0.01,0.80]$
$0.436$ $0.319$ $0.296$ $0.356$ $0.532$
$\mathbf{\beta^W_2}$ $[0.10,0.80]$ $[0.10,0.80]$ $[0.10,0.80]$ $[0.01,0.80]$ $[0.01,0.80]$
$0.720$ $0.753$ $0.325$ $0.348$ $0.322$
$\mathbf{\beta_3}$ $[1 \times 10^{-7},\,0.001]$ $[1 \times 10^{-7},\,0.001]$ $[1 \times 10^{-7},\,0.001]$ $[1 \times 10^{-7},\,0.001]$ $[1 \times 10^{-7},\,0.001]$
$0.000765$ $0.0000861$ $0.000961$ $0.000596$ $0.000996$
$\mathbf{\alpha}$ $[0.25,0.75]$ $[0.25,0.75]$ $[0.25,0.75]$ $[0.25,0.75]$ $[0.25,0.75]$
$0.407$ $0.572$ $0.744$ $0.659$ $0.723$
$\mathbf{\nu}$ $[0.0,1.0]$ $[0.0,1.0]$ $[0.0,1.0]$ $[0.0,1.0]$ $[0.0,1.0]$
$0.691$ $0.019$ $0.022$ $0.483$ $0.156$
Table 2.  Weight equation parameter values for each response period.
$\mathit{\boldsymbol{t}}\mathbf{\in[0,95]}$ $\mathit{\boldsymbol{t}}\mathbf{\in[95,202]}$ $\mathit{\boldsymbol{t}}\mathbf{\in[202,248]}$ $\mathit{\boldsymbol{t}}\mathbf{\in[248,460]}$ $\mathit{\boldsymbol{t}}\mathbf{\in[460,647]}$
$\mathit{\boldsymbol{a}}$ 0.015 0.030 0.060 0.013 0.013
$\mathit{\boldsymbol{b}}$ 40 20 10 50 45
$\mathit{\boldsymbol{t}}\mathbf{\in[0,95]}$ $\mathit{\boldsymbol{t}}\mathbf{\in[95,202]}$ $\mathit{\boldsymbol{t}}\mathbf{\in[202,248]}$ $\mathit{\boldsymbol{t}}\mathbf{\in[248,460]}$ $\mathit{\boldsymbol{t}}\mathbf{\in[460,647]}$
$\mathit{\boldsymbol{a}}$ 0.015 0.030 0.060 0.013 0.013
$\mathit{\boldsymbol{b}}$ 40 20 10 50 45
Table 4.  $\bar{\mathcal{R}}_A(t)$ for each response period.
Response period $\bar{\mathcal{R}}_A(t)$
$t\in[0,95]$ 3.31
$t\in[95,202]$ 1.88
$t\in[202,248]$ 0.90
$t\in[248,460]$ 0.27
$t\in[460,647]$ 0.16
Response period $\bar{\mathcal{R}}_A(t)$
$t\in[0,95]$ 3.31
$t\in[95,202]$ 1.88
$t\in[202,248]$ 0.90
$t\in[248,460]$ 0.27
$t\in[460,647]$ 0.16
Table 5.  Impact of prophylactic vaccine distributed during the outbreak on cumulative infections and deaths
Cumulative Infections Cumulative Deaths
at tf Prevented at tf Prevented
Baseline$^*$ 14436 0 4416 0
$\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.9$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ Start vax at $t=95$ 8863 5573 2738 1678
$\rho_L={\raise0.5ex\hbox{$\scriptstyle 0.3$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $t=202$ 12583 1853 3837 579
$\rho_H={\raise0.5ex\hbox{$\scriptstyle 0.3$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $t=248$ 13225 1211 4050 366
$t=460$ 14325 111 4392 24
$\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.9$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ Start vax at $t=95$ 5138 9298 1656 2760
$\rho_L={\raise0.5ex\hbox{$\scriptstyle 0.9$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $t=202$ 11075 3361 3343 1073
$\rho_H={\raise0.5ex\hbox{$\scriptstyle 0.9$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $t=248$ 12168 2268 3708 708
$t=460$ 14173 263 4357 59
$\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.99$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 7$}}$ Start vax at $t=95$ 13999 437 4283 133
$\rho_L={\raise0.5ex\hbox{$\scriptstyle 0.01$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $t=202$ 14285 151 4369 47
$\rho_H={\raise0.5ex\hbox{$\scriptstyle 0.95$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 21$}}$ $t=248$ 14351 85 4391 25
$t=460$ 14429 7 4415 1
$\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.99$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 7$}}$ Start vax at $t=95$ 8821 5615 2726 1690
$\rho_L={\raise0.5ex\hbox{$\scriptstyle 0.3$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $t=202$ 12553 1883 3827 589
$\rho_H={\raise0.5ex\hbox{$\scriptstyle 0.95$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 21$}}$ $t=248$ 13211 1225 4046 370
$t=460$ 14323 113 4391 25
$^*$Cumulative number of infections or deaths at $t=647$, as predicted by System (1) with parameters from Tables 1 & 3, when no prophylactic vaccine is administered.
Cumulative Infections Cumulative Deaths
at tf Prevented at tf Prevented
Baseline$^*$ 14436 0 4416 0
$\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.9$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ Start vax at $t=95$ 8863 5573 2738 1678
$\rho_L={\raise0.5ex\hbox{$\scriptstyle 0.3$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $t=202$ 12583 1853 3837 579
$\rho_H={\raise0.5ex\hbox{$\scriptstyle 0.3$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $t=248$ 13225 1211 4050 366
$t=460$ 14325 111 4392 24
$\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.9$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ Start vax at $t=95$ 5138 9298 1656 2760
$\rho_L={\raise0.5ex\hbox{$\scriptstyle 0.9$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $t=202$ 11075 3361 3343 1073
$\rho_H={\raise0.5ex\hbox{$\scriptstyle 0.9$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $t=248$ 12168 2268 3708 708
$t=460$ 14173 263 4357 59
$\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.99$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 7$}}$ Start vax at $t=95$ 13999 437 4283 133
$\rho_L={\raise0.5ex\hbox{$\scriptstyle 0.01$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $t=202$ 14285 151 4369 47
$\rho_H={\raise0.5ex\hbox{$\scriptstyle 0.95$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 21$}}$ $t=248$ 14351 85 4391 25
$t=460$ 14429 7 4415 1
$\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.99$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 7$}}$ Start vax at $t=95$ 8821 5615 2726 1690
$\rho_L={\raise0.5ex\hbox{$\scriptstyle 0.3$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $t=202$ 12553 1883 3827 589
$\rho_H={\raise0.5ex\hbox{$\scriptstyle 0.95$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 21$}}$ $t=248$ 13211 1225 4046 370
$t=460$ 14323 113 4391 25
$^*$Cumulative number of infections or deaths at $t=647$, as predicted by System (1) with parameters from Tables 1 & 3, when no prophylactic vaccine is administered.
Table 6.  Effect of vaccination prior to an initial outbreak (1 infected). Vaccination coverage of healthcare workers is 0% when $x=0$ and 95% otherwise.
Vaccination strategy for $t>0$
$\rho_L = 0$ $\rho_L = {\raise0.5ex\hbox{$\scriptstyle 0.3$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $\rho_L = {\raise0.5ex\hbox{$\scriptstyle 0.01$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $\rho_L = {\raise0.5ex\hbox{$\scriptstyle 0.3$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$
$\rho_H = 0$ $\rho_H = {\raise0.5ex\hbox{$\scriptstyle 0.3$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $\rho_H = {\raise0.5ex\hbox{$\scriptstyle 0.95$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 21$}}$ $\rho_H = {\raise0.5ex\hbox{$\scriptstyle 0.95$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 21$}}$
$\hat{\rho} = 0$ $\hat{\rho} = {\raise0.5ex\hbox{$\scriptstyle 0.9$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.99$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 7$}}$ $\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.99$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 7$}}$
CI $\mathbf{t^*}$ CI $\mathbf{t^*}$ CI $\mathbf{t^*}$ CI $\mathbf{t^*}$
0 4156370 495 3743965 516 650846 492 2643460 492
0.10 3064971 648 2506362 694 1853742 644 1845334 644
0.20 1866043 974 1026659 1138 1040091 987 1030788 988
0.29 764174 1990 37 103 188898 2267 188898 2267
0.30 646329 2270 33 0 82717 2546 82717 2546
0.31 529673 2657 29 0 19911 2502 19911 2502
0.32 414210 3213 25 0 3866 2091 3866 2091
0.33 300060 4090 23 0 954 1570 954 1570
0.34 171811 5697 20 0 325 1023 325 1023
0.35 13195 7300 18 0 147 0 147 0
0.36 431 0 16 0 81 0 81 0
0.40 26 0 20 0 23 0 23 0
0.50 7 0 7 0 7 0 7 0
0.60 4 0 4 0 4 0 4 0
0.70 2 0 2 0 2 0 2 0
0.80 2 0 2 0 2 0 2 0
0.90 1 0 1 0 1 0 1 0
$t^*$ is the day at which the peak number of cases occurs; CI represents cumulative infections calculated once $I(t)+\hat{I}(t) < 1$
Vaccination strategy for $t>0$
$\rho_L = 0$ $\rho_L = {\raise0.5ex\hbox{$\scriptstyle 0.3$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $\rho_L = {\raise0.5ex\hbox{$\scriptstyle 0.01$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $\rho_L = {\raise0.5ex\hbox{$\scriptstyle 0.3$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$
$\rho_H = 0$ $\rho_H = {\raise0.5ex\hbox{$\scriptstyle 0.3$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $\rho_H = {\raise0.5ex\hbox{$\scriptstyle 0.95$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 21$}}$ $\rho_H = {\raise0.5ex\hbox{$\scriptstyle 0.95$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 21$}}$
$\hat{\rho} = 0$ $\hat{\rho} = {\raise0.5ex\hbox{$\scriptstyle 0.9$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 365$}}$ $\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.99$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 7$}}$ $\hat{\rho}={\raise0.5ex\hbox{$\scriptstyle 0.99$}\kern-0.1em/\kern-0.15em\lower0.25ex\hbox{$\scriptstyle 7$}}$
CI $\mathbf{t^*}$ CI $\mathbf{t^*}$ CI $\mathbf{t^*}$ CI $\mathbf{t^*}$
0 4156370 495 3743965 516 650846 492 2643460 492
0.10 3064971 648 2506362 694 1853742 644 1845334 644
0.20 1866043 974 1026659 1138 1040091 987 1030788 988
0.29 764174 1990 37 103 188898 2267 188898 2267
0.30 646329 2270 33 0 82717 2546 82717 2546
0.31 529673 2657 29 0 19911 2502 19911 2502
0.32 414210 3213 25 0 3866 2091 3866 2091
0.33 300060 4090 23 0 954 1570 954 1570
0.34 171811 5697 20 0 325 1023 325 1023
0.35 13195 7300 18 0 147 0 147 0
0.36 431 0 16 0 81 0 81 0
0.40 26 0 20 0 23 0 23 0
0.50 7 0 7 0 7 0 7 0
0.60 4 0 4 0 4 0 4 0
0.70 2 0 2 0 2 0 2 0
0.80 2 0 2 0 2 0 2 0
0.90 1 0 1 0 1 0 1 0
$t^*$ is the day at which the peak number of cases occurs; CI represents cumulative infections calculated once $I(t)+\hat{I}(t) < 1$
[1]

Julien Arino, K.L. Cooke, P. van den Driessche, J. Velasco-Hernández. An epidemiology model that includes a leaky vaccine with a general waning function. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 479-495. doi: 10.3934/dcdsb.2004.4.479

[2]

Folashade B. Agusto, Abba B. Gumel. Theoretical assessment of avian influenza vaccine. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 1-25. doi: 10.3934/dcdsb.2010.13.1

[3]

Erica M. Rutter, Yang Kuang. Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1001-1021. doi: 10.3934/dcdsb.2017050

[4]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[5]

Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219

[6]

Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete & Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541

[7]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[8]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[9]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[10]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[11]

Ruben A. Proano, Sheldon H. Jacobson, Janet A. Jokela. A multi-attribute approach for setting pediatric vaccine stockpile levels. Journal of Industrial & Management Optimization, 2010, 6 (4) : 709-727. doi: 10.3934/jimo.2010.6.709

[12]

Abba B. Gumel, C. Connell McCluskey, James Watmough. An sveir model for assessing potential impact of an imperfect anti-SARS vaccine. Mathematical Biosciences & Engineering, 2006, 3 (3) : 485-512. doi: 10.3934/mbe.2006.3.485

[13]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[14]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[15]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[16]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

[17]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[18]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[19]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

[20]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (65)
  • HTML views (227)
  • Cited by (0)

Other articles
by authors

[Back to Top]