
- Previous Article
- MBE Home
- This Issue
-
Next Article
Complex wolbachia infection dynamics in mosquitoes with imperfect maternal transmission
Transmission dynamics and optimal control of brucellosis in Inner Mongolia of China
1. | Department of Applied Mathematics, School of Science, Changchun University of Science and Technology, Changchun 130022, China |
2. | School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China |
3. | School of Mechatronic Engineering, North University of China, Taiyuan 030051, China |
4. | Complex Systems Research Center, Shanxi University Taiyuan 030006, China |
5. | China Animal Health And Epidemiology Center, Qingdao 266032, China |
A multigroup model is developed to characterize brucellosis transmission, to explore potential effects of key factors, and to prioritize control measures. The global threshold dynamics are completely characterized by theory of asymptotic autonomous systems and Lyapunov direct method. We then formulate a multi-objective optimization problem and, by the weighted sum method, transform it into a scalar optimization problem on minimizing the total cost for control. The existence of optimal control and its characterization are well established by Pontryagin's Maximum Principle. We further parameterize the model and compute optimal control strategy for Inner Mongolia in China. In particular, we expound the effects of sheep recruitment, vaccination of sheep, culling of infected sheep, and health education of human on the dynamics and control of brucellosis. This study indicates that current control measures in Inner Mongolia are not working well and Brucellosis will continue to increase. The main finding here supports opposing unregulated sheep breeding and suggests vaccination and health education as the preferred necessary emergency intervention control. The policymakers must take a new look at the current control strategy, and, in order to control brucellosis better in Inner Mongolia, the governments have to preemptively press ahead with more effective measures.
References:
[1] |
B. Aïnseba, C. Benosman and P. Magal,
A model for ovine brucellosis incorporating direct and indirect transmission, J. Biol. Dyn., 4 (2010), 2-11.
doi: 10.1080/17513750903171688. |
[2] |
A. H. Al-Talafhah, S. Q. Lafi and Y. Al-Tarazi,
Epidemiology of ovine brucellosis in Awassi sheep in Northern Jordan, Prev. Vet. Med., 60 (2003), 297-306.
doi: 10.1016/S0167-5877(03)00127-2. |
[3] |
H. K. Aulakh, P. K. Patil, S. Sharma, H. Kumar, V. Mahajan and K. S. Sandhu,
A study on the Epidemiology of Bovine Brucellosis in Punjab (India) Using Milk-ELISA, Acta Vet. Brun., 77 (2008), 393-399.
doi: 10.2754/avb200877030393. |
[4] |
H. W. Boone, Malta fever in China, China Medical Mission, 19 (1905), 167-173. Google Scholar |
[5] |
R. S. Cantrell, C. Cosner and W. F. Fagan,
Brucellosis, botflies, and brainworms: The impact of edge habitats on pathogen transmission and species extinction, J. Math. Biol., 42 (2001), 95-119.
doi: 10.1007/s002850000064. |
[6] |
W. J. Chen, B. Y. Cui and Q. H. Zhang, Analysis of epidemic characteristics on brucellosis in Inner Mongolia, Chinese Journal of Control of Endemic Disease, 23 (2008), 56-58. Google Scholar |
[7] |
T. J. Clayton, Optimal Cotnrol of Epidemic Models Involving Rabies and West Nile Viruses Ph. D thesis, University of Tennessee, 2008. Google Scholar |
[8] |
Committee of China Animal Husbandry Yearbook Editors, China Animal Husbandry Yearbook, China Agriculture Press, Beijing, 2011. Google Scholar |
[9] |
J. B. Ding, K. R. Mao, J. S. Cheng, Z. H. Dai and Y. W. Jiang, The application and research advances of Brucella vaccines, Acta Microbiol. Sin., 46 (2006), 856. Google Scholar |
[10] |
A. D'Orazi, M. Mignemi and F. Geraci, Spatial distribution of brucellosis in sheep and goats in Sicily from 2001 to 2005, Vet. Ital., 43 (2007), 541-548. Google Scholar |
[11] |
J. F. Du and J. Zhang, Analysis of brucellosis monitoring results in Hexigten Banner, Chinese Journal of Epidemiology, 22 (2003), 459-461. Google Scholar |
[12] |
W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Controls, SpringerVerlag, New York, 1975. |
[13] |
S. L. Gang, Y. L. Zhao and S. Y. Zhang, Analysis of 1990 to 2001surveillance effect of national major surveilla nce place for brucellosis, Chinese Journal of Control of Endemic Disease, 5 (2002), 285-288. Google Scholar |
[14] |
J. Gonzíez-Guzmán and R. Naulin,
Analysis of a model of bovine brucellosis using singular perturbations, J. Math. Biol., 33 (1994), 211-223.
doi: 10.1007/BF00160180. |
[15] |
W. D. Guo and H. Y. Chi, Epidemiological analysis of human brucellosis in Inner Mongolia Autonomous Region from 2002-2006, China Tropical Medicine, 8 (2008), 604-606. Google Scholar |
[16] |
Q. Hou, X. D. Sun, J. Zhang, Y. J. Liu, Y. M. Wang and Z. Jin,
Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China, Math. Biosci., 242 (2013), 51-58.
doi: 10.1016/j.mbs.2012.11.012. |
[17] |
X. W. Hu, What is the best prevention and control of brucella?, Veterinary Orientation, 15 (2015), 16-18. Google Scholar |
[18] |
A. Konak, D. W. Coitb and A. E. Smithc,
Multi-objective optimization using genetic algorithms: A tutorial, Reliab. Eng. Syst. Safe., 91 (2006), 992-1007.
doi: 10.1016/j.ress.2005.11.018. |
[19] |
D. L. Lukes, Differential Equations: Classical to Controlled, vol. 162 of Mathematics in Science and Engineering, Academic Press, New York, 1982. |
[20] |
J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, Pa. , 1976. |
[21] |
S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, 2007. |
[22] |
T. F. Man, D. L. Wang and B. Y. Cui, Analysis on surveillance data of brucellosis in China, 2009, Disease Surveillance, 25 (2010), 944-946. Google Scholar |
[23] |
L. Markus, Asymptotically autonomous differential systems, In: S. Lefschetz (ed. ), Contributions to the Theory of Nonlinear Oscillations III, Princeton: Princeton University Press, Annals of Mathematics Studies, 3 (1956), 17–29. |
[24] |
R. T. Marler and J. S. Arora,
Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim., 26 (2004), 369-395.
doi: 10.1007/s00158-003-0368-6. |
[25] |
Ministry of Health of the People's Republic of China, China Health Statistics Yearbook, People's Medical Publishing House Beijing, 2011. Google Scholar |
[26] |
J. B. Muma, N. Toft, J. Oloya, A. Lund, K. Nielsen, K. Samui and E. Skjerve,
Evaluation of three serological tests for brucellosis in naturally infected cattle using latent class analysis, Vet. Microbiol., 125 (2007), 187-192.
doi: 10.1016/j.vetmic.2007.05.012. |
[27] |
National Bureau of Statistics of China, China Population Statistics Yearbook, China Statistical Publishing House, Beijing, 2010, Availiable from: http://www.stats.gov.cn/tjsj/ndsj/2010/indexch.htm. Google Scholar |
[28] |
R. M. Neilan and S. Lenhart,
An introduction to optimal control with an application in disease modeling, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 75 (2010), 67-81.
|
[29] |
G. Pappas, P. Papadimitriou, N. Akritidis, L. Christou and E. V. Tsianos,
The new global map of human brucellosis, Lancet Infect. Dis., 6 (2006), 91-99.
doi: 10.1016/S1473-3099(06)70382-6. |
[30] |
D. R. Piao, Y. L. Li, H. Y. Zhao and B. Y. Cui, Epidemic situation analysis of human brucellosis in Inner Mongolia during 1952 to 2007, Chinese Journal of Epidemiology, 28 (2009), 420-423. Google Scholar |
[31] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelize and E. F. Mishchenko, The mathematical theory of optimal processes, Trudy Mat.inst.steklov, 16 (1962), 119-158. Google Scholar |
[32] |
D. Q. Shang, D. L. Xiao and J. M. Yin, Epidemiology and control of brucellosis in China, Vet. Microbiol., 90 (2002), p165. Google Scholar |
[33] |
X. T. Shi, S. P. Gu, M. X. Zheng and H. L. Ma, The prevalence and control of brucellosis disease, China Animal Husbandry and Veterinary Medicine, 37 (2010), 204-207. Google Scholar |
[34] |
J. L. Solorio-Rivera, J. C. Segura-Correa and L. G. Sánchez-Gil,
Seroprevalence of and risk factors for brucellosis of goats in herds of Michoacan, Mexico, Prev. Vet. Med., 82 (2007), 282-290.
doi: 10.1016/j.prevetmed.2007.05.024. |
[35] |
The Sate Council of China, National animal disease prevention and control for the medium and long term planning (2012-2020), 2012. Availiable from: http://www.gov.cn/zwgk/2012-05/25/content_2145581.htm. Google Scholar |
[36] |
H. R. Thieme,
Convergence results and a Poinca'e-Bendixson trichotomy for asymptotically automous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[37] |
P. Van Den Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[38] |
D. L. Wang, T. F. Li, S. L. Jiang, F. Q. Liu and J. Q. Wang, Analysis of national brucellosis surveillance in 2007, Chinese Journal of Control of Endemic Disease, 23 (2008), 443-445. Google Scholar |
[39] |
H. B. Wang, Z. M. Wang and L. Dong, Investigation of brucellosis epidemic situation in northwest of Inner Mongolia chifeng city from 2003 to 2004, Endemic. Dis. Bull., 26 (2006), 67-68. Google Scholar |
[40] |
L. J. Wu, Prevention and control of livestock brucella in Inner Mongolia, Veterinary Orientation, 9 (2012), 17-19. Google Scholar |
[41] |
W. W. Yin and H. Sun, Epidemic situation and strategy proposal for human brucellosis in China, Disease Surveillance, 24 (2009), 475-477. Google Scholar |
[42] |
F. Y. Zhao and T. Z. Li, A study on brucellosis prevention and vaccination, Veterinary Orientation, 151 (2010), 24-27. Google Scholar |
[43] |
Y. L. Zhao, D. L. Wang and S. L. Giang, Analysis on the surveillance results of the national main monitoring station of the brucellosis in 2001 to 2004, Chinese Journal of Control of Endemic Disease, 42 (2005), 120-134. Google Scholar |
[44] |
J. Zinsstag, F. Roth, D. Orkhon, G. Chimed-Ochir, M. Nansalmaa, J. Kolar and P. Vounatsou,
A model of animal human brucellosis transmission in Mongolia, Prev. Vet. Med., 69 (2005), 77-95.
doi: 10.1016/j.prevetmed.2005.01.017. |
show all references
References:
[1] |
B. Aïnseba, C. Benosman and P. Magal,
A model for ovine brucellosis incorporating direct and indirect transmission, J. Biol. Dyn., 4 (2010), 2-11.
doi: 10.1080/17513750903171688. |
[2] |
A. H. Al-Talafhah, S. Q. Lafi and Y. Al-Tarazi,
Epidemiology of ovine brucellosis in Awassi sheep in Northern Jordan, Prev. Vet. Med., 60 (2003), 297-306.
doi: 10.1016/S0167-5877(03)00127-2. |
[3] |
H. K. Aulakh, P. K. Patil, S. Sharma, H. Kumar, V. Mahajan and K. S. Sandhu,
A study on the Epidemiology of Bovine Brucellosis in Punjab (India) Using Milk-ELISA, Acta Vet. Brun., 77 (2008), 393-399.
doi: 10.2754/avb200877030393. |
[4] |
H. W. Boone, Malta fever in China, China Medical Mission, 19 (1905), 167-173. Google Scholar |
[5] |
R. S. Cantrell, C. Cosner and W. F. Fagan,
Brucellosis, botflies, and brainworms: The impact of edge habitats on pathogen transmission and species extinction, J. Math. Biol., 42 (2001), 95-119.
doi: 10.1007/s002850000064. |
[6] |
W. J. Chen, B. Y. Cui and Q. H. Zhang, Analysis of epidemic characteristics on brucellosis in Inner Mongolia, Chinese Journal of Control of Endemic Disease, 23 (2008), 56-58. Google Scholar |
[7] |
T. J. Clayton, Optimal Cotnrol of Epidemic Models Involving Rabies and West Nile Viruses Ph. D thesis, University of Tennessee, 2008. Google Scholar |
[8] |
Committee of China Animal Husbandry Yearbook Editors, China Animal Husbandry Yearbook, China Agriculture Press, Beijing, 2011. Google Scholar |
[9] |
J. B. Ding, K. R. Mao, J. S. Cheng, Z. H. Dai and Y. W. Jiang, The application and research advances of Brucella vaccines, Acta Microbiol. Sin., 46 (2006), 856. Google Scholar |
[10] |
A. D'Orazi, M. Mignemi and F. Geraci, Spatial distribution of brucellosis in sheep and goats in Sicily from 2001 to 2005, Vet. Ital., 43 (2007), 541-548. Google Scholar |
[11] |
J. F. Du and J. Zhang, Analysis of brucellosis monitoring results in Hexigten Banner, Chinese Journal of Epidemiology, 22 (2003), 459-461. Google Scholar |
[12] |
W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Controls, SpringerVerlag, New York, 1975. |
[13] |
S. L. Gang, Y. L. Zhao and S. Y. Zhang, Analysis of 1990 to 2001surveillance effect of national major surveilla nce place for brucellosis, Chinese Journal of Control of Endemic Disease, 5 (2002), 285-288. Google Scholar |
[14] |
J. Gonzíez-Guzmán and R. Naulin,
Analysis of a model of bovine brucellosis using singular perturbations, J. Math. Biol., 33 (1994), 211-223.
doi: 10.1007/BF00160180. |
[15] |
W. D. Guo and H. Y. Chi, Epidemiological analysis of human brucellosis in Inner Mongolia Autonomous Region from 2002-2006, China Tropical Medicine, 8 (2008), 604-606. Google Scholar |
[16] |
Q. Hou, X. D. Sun, J. Zhang, Y. J. Liu, Y. M. Wang and Z. Jin,
Modeling the transmission dynamics of sheep brucellosis in Inner Mongolia Autonomous Region, China, Math. Biosci., 242 (2013), 51-58.
doi: 10.1016/j.mbs.2012.11.012. |
[17] |
X. W. Hu, What is the best prevention and control of brucella?, Veterinary Orientation, 15 (2015), 16-18. Google Scholar |
[18] |
A. Konak, D. W. Coitb and A. E. Smithc,
Multi-objective optimization using genetic algorithms: A tutorial, Reliab. Eng. Syst. Safe., 91 (2006), 992-1007.
doi: 10.1016/j.ress.2005.11.018. |
[19] |
D. L. Lukes, Differential Equations: Classical to Controlled, vol. 162 of Mathematics in Science and Engineering, Academic Press, New York, 1982. |
[20] |
J. P. LaSalle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, Pa. , 1976. |
[21] |
S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC Mathematical and Computational Biology Series, Chapman & Hall/CRC, Boca Raton, 2007. |
[22] |
T. F. Man, D. L. Wang and B. Y. Cui, Analysis on surveillance data of brucellosis in China, 2009, Disease Surveillance, 25 (2010), 944-946. Google Scholar |
[23] |
L. Markus, Asymptotically autonomous differential systems, In: S. Lefschetz (ed. ), Contributions to the Theory of Nonlinear Oscillations III, Princeton: Princeton University Press, Annals of Mathematics Studies, 3 (1956), 17–29. |
[24] |
R. T. Marler and J. S. Arora,
Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim., 26 (2004), 369-395.
doi: 10.1007/s00158-003-0368-6. |
[25] |
Ministry of Health of the People's Republic of China, China Health Statistics Yearbook, People's Medical Publishing House Beijing, 2011. Google Scholar |
[26] |
J. B. Muma, N. Toft, J. Oloya, A. Lund, K. Nielsen, K. Samui and E. Skjerve,
Evaluation of three serological tests for brucellosis in naturally infected cattle using latent class analysis, Vet. Microbiol., 125 (2007), 187-192.
doi: 10.1016/j.vetmic.2007.05.012. |
[27] |
National Bureau of Statistics of China, China Population Statistics Yearbook, China Statistical Publishing House, Beijing, 2010, Availiable from: http://www.stats.gov.cn/tjsj/ndsj/2010/indexch.htm. Google Scholar |
[28] |
R. M. Neilan and S. Lenhart,
An introduction to optimal control with an application in disease modeling, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 75 (2010), 67-81.
|
[29] |
G. Pappas, P. Papadimitriou, N. Akritidis, L. Christou and E. V. Tsianos,
The new global map of human brucellosis, Lancet Infect. Dis., 6 (2006), 91-99.
doi: 10.1016/S1473-3099(06)70382-6. |
[30] |
D. R. Piao, Y. L. Li, H. Y. Zhao and B. Y. Cui, Epidemic situation analysis of human brucellosis in Inner Mongolia during 1952 to 2007, Chinese Journal of Epidemiology, 28 (2009), 420-423. Google Scholar |
[31] |
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelize and E. F. Mishchenko, The mathematical theory of optimal processes, Trudy Mat.inst.steklov, 16 (1962), 119-158. Google Scholar |
[32] |
D. Q. Shang, D. L. Xiao and J. M. Yin, Epidemiology and control of brucellosis in China, Vet. Microbiol., 90 (2002), p165. Google Scholar |
[33] |
X. T. Shi, S. P. Gu, M. X. Zheng and H. L. Ma, The prevalence and control of brucellosis disease, China Animal Husbandry and Veterinary Medicine, 37 (2010), 204-207. Google Scholar |
[34] |
J. L. Solorio-Rivera, J. C. Segura-Correa and L. G. Sánchez-Gil,
Seroprevalence of and risk factors for brucellosis of goats in herds of Michoacan, Mexico, Prev. Vet. Med., 82 (2007), 282-290.
doi: 10.1016/j.prevetmed.2007.05.024. |
[35] |
The Sate Council of China, National animal disease prevention and control for the medium and long term planning (2012-2020), 2012. Availiable from: http://www.gov.cn/zwgk/2012-05/25/content_2145581.htm. Google Scholar |
[36] |
H. R. Thieme,
Convergence results and a Poinca'e-Bendixson trichotomy for asymptotically automous differential equations, J. Math. Biol., 30 (1992), 755-763.
doi: 10.1007/BF00173267. |
[37] |
P. Van Den Driessche and J. Watmough,
Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[38] |
D. L. Wang, T. F. Li, S. L. Jiang, F. Q. Liu and J. Q. Wang, Analysis of national brucellosis surveillance in 2007, Chinese Journal of Control of Endemic Disease, 23 (2008), 443-445. Google Scholar |
[39] |
H. B. Wang, Z. M. Wang and L. Dong, Investigation of brucellosis epidemic situation in northwest of Inner Mongolia chifeng city from 2003 to 2004, Endemic. Dis. Bull., 26 (2006), 67-68. Google Scholar |
[40] |
L. J. Wu, Prevention and control of livestock brucella in Inner Mongolia, Veterinary Orientation, 9 (2012), 17-19. Google Scholar |
[41] |
W. W. Yin and H. Sun, Epidemic situation and strategy proposal for human brucellosis in China, Disease Surveillance, 24 (2009), 475-477. Google Scholar |
[42] |
F. Y. Zhao and T. Z. Li, A study on brucellosis prevention and vaccination, Veterinary Orientation, 151 (2010), 24-27. Google Scholar |
[43] |
Y. L. Zhao, D. L. Wang and S. L. Giang, Analysis on the surveillance results of the national main monitoring station of the brucellosis in 2001 to 2004, Chinese Journal of Control of Endemic Disease, 42 (2005), 120-134. Google Scholar |
[44] |
J. Zinsstag, F. Roth, D. Orkhon, G. Chimed-Ochir, M. Nansalmaa, J. Kolar and P. Vounatsou,
A model of animal human brucellosis transmission in Mongolia, Prev. Vet. Med., 69 (2005), 77-95.
doi: 10.1016/j.prevetmed.2005.01.017. |








Parameter | Value/Range | Unit | Definition | Reference |
3300 | | Constant recruitment of sheep | [8] | |
| 0.6 | year | Natural elimination or death rate of sheep | [8] |
| [1, 3] | year | Mean effective period of vaccination | [9,33,42] |
| | year | Culling rate of infectious sheep | [17,35,40,41] |
| [0, 0.85] | year | Effective vaccination rate of susceptible sheep | [9,42,33] |
| 12 | | Recruitment of | [27] |
| 11 | | Recruitment of | [27] |
| 0.006 | year | Natural death rate of human | [27] |
| 0.25 | year | Acute onset period of human | [41] |
| [0.32, 0.74] | year | Fraction of acute human cases turned into chronic cases | [41] |
| | year | Transmission rate of sheep | Fitting |
| | year | Transmission rate between sheep and | Fitting |
| 0.17 | year | Infection risk attenuation coefficient of | Fitting |
Note: |
Parameter | Value/Range | Unit | Definition | Reference |
3300 | | Constant recruitment of sheep | [8] | |
| 0.6 | year | Natural elimination or death rate of sheep | [8] |
| [1, 3] | year | Mean effective period of vaccination | [9,33,42] |
| | year | Culling rate of infectious sheep | [17,35,40,41] |
| [0, 0.85] | year | Effective vaccination rate of susceptible sheep | [9,42,33] |
| 12 | | Recruitment of | [27] |
| 11 | | Recruitment of | [27] |
| 0.006 | year | Natural death rate of human | [27] |
| 0.25 | year | Acute onset period of human | [41] |
| [0.32, 0.74] | year | Fraction of acute human cases turned into chronic cases | [41] |
| | year | Transmission rate of sheep | Fitting |
| | year | Transmission rate between sheep and | Fitting |
| 0.17 | year | Infection risk attenuation coefficient of | Fitting |
Note: |
Year | 2001 | 2002 | 2003 | 2004 | 2005 |
Sheep Breeding[8] | 3551.6 | 3515.9 | 3951.7 | 4450.6 | 5318.48 |
Sale and Slaughter[8] | 2081.2 | 2146.5 | 2156 | 2867.74 | 3782.99 |
Brucellosis sheep1 | 33.74 | 35.15 | 59.27 | 89.1 | 132.95 |
Year | 2006 | 2007 | 2008 | 2009 | 2010 |
Sheep Breeding[8] | 5419.99 | 5594.44 | 5063.29 | 5125.3 | 5197.2 |
Sale and Slaughter[8] | 4539.6 | 5011.05 | 4874.94 | 5183.7 | 5339.2 |
Brucellosis sheep1 | 162.57 | 195.79 | 202.52 | 230.63 | 259.85 |
1 Calculated from data of sheep breeding and the annual seroprevalence of sheep brucella in key monitoring regions of Inner Mongolia[11,13,22,30,38,39,43]. |
Year | 2001 | 2002 | 2003 | 2004 | 2005 |
Sheep Breeding[8] | 3551.6 | 3515.9 | 3951.7 | 4450.6 | 5318.48 |
Sale and Slaughter[8] | 2081.2 | 2146.5 | 2156 | 2867.74 | 3782.99 |
Brucellosis sheep1 | 33.74 | 35.15 | 59.27 | 89.1 | 132.95 |
Year | 2006 | 2007 | 2008 | 2009 | 2010 |
Sheep Breeding[8] | 5419.99 | 5594.44 | 5063.29 | 5125.3 | 5197.2 |
Sale and Slaughter[8] | 4539.6 | 5011.05 | 4874.94 | 5183.7 | 5339.2 |
Brucellosis sheep1 | 162.57 | 195.79 | 202.52 | 230.63 | 259.85 |
1 Calculated from data of sheep breeding and the annual seroprevalence of sheep brucella in key monitoring regions of Inner Mongolia[11,13,22,30,38,39,43]. |
Year | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
Reported Human Cases | 420 | 610 | 1280 | 4140 | 8740 | 8050 | 8117 |
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
Reported Human Cases | 11105 | 16551 | 16935 | 20845 | 12817 | 9310 | 10538 |
Year | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 |
Reported Human Cases | 420 | 610 | 1280 | 4140 | 8740 | 8050 | 8117 |
Year | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
Reported Human Cases | 11105 | 16551 | 16935 | 20845 | 12817 | 9310 | 10538 |
[1] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[2] |
Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021003 |
[3] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[4] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[5] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
[6] |
C. Burgos, J.-C. Cortés, L. Shaikhet, R.-J. Villanueva. A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1233-1244. doi: 10.3934/dcdss.2020356 |
[7] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[8] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[9] |
Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021021 |
[10] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020032 |
[11] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[12] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[13] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[14] |
Yancong Xu, Lijun Wei, Xiaoyu Jiang, Zirui Zhu. Complex dynamics of a SIRS epidemic model with the influence of hospital bed number. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021016 |
[15] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[16] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 |
[17] |
Jinsen Zhuang, Yan Zhou, Yonghui Xia. Synchronization analysis of drive-response multi-layer dynamical networks with additive couplings and stochastic perturbations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1607-1629. doi: 10.3934/dcdss.2020279 |
[18] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[19] |
Sibel Senan, Eylem Yucel, Zeynep Orman, Ruya Samli, Sabri Arik. A Novel Lyapunov functional with application to stability analysis of neutral systems with nonlinear disturbances. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1415-1428. doi: 10.3934/dcdss.2020358 |
[20] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]