August 2017, 11(4): 761-781. doi: 10.3934/ipi.2017036

On a spatial-temporal decomposition of optical flow

1. 

Computational Science Center, University of Vienna, Oskar-Morgenstern Platz 1,1090 Vienna, Austria

2. 

Johann Radon Institute for Computational and Applied Mathematics, (RICAM), Altenbergerstraẞe 69,4040 Linz, Austria

* Corresponding author: Aniello Raffaele Patrone

Received  July 2015 Revised  April 2017 Published  June 2017

Fund Project: The first author is supported by WWTF

In this paper we present a decomposition algorithm for computation of the spatial-temporal optical flow of a dynamic image sequence. We consider several applications, such as the extraction of temporal motion features and motion detection in dynamic sequences under varying illumination conditions, such as they appear for instance in psychological flickering experiments. For the numerical implementation we are solving an integro-differential equation by a fixed point iteration. For comparison purposes we use a standard time dependent optical flow algorithm, which in contrast to our method, constitutes in solving a spatial-temporal differential equation.

Citation: Aniello Raffaele Patrone, Otmar Scherzer. On a spatial-temporal decomposition of optical flow. Inverse Problems & Imaging, 2017, 11 (4) : 761-781. doi: 10.3934/ipi.2017036
References:
[1]

J. Abhau, Z. Belhachmi and O. Scherzer, On a decomposition model for optical flow, in Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science, 5681, Springer-Verlag, Berlin, Heidelberg, 2009,126-139. doi: 10.1007/978-3-642-03641-5_10.

[2]

R. AndreevO. Scherzer and W. Zulehner, Simultaneous optical flow and source estimation: Space-time discretization and preconditioning, Applied Numerical Mathematics, 96 (2015), 72-81. doi: 10.1016/j.apnum.2015.04.007.

[3]

G. Aubert and J. F. Aujol, Modeling very oscillating signals. Application to image processing, Appl. Math. Optim., 51 (2005), 163-182. doi: 10.1007/s00245-004-0812-z.

[4]

J. F. Aujol and A. Chambolle, Dual norms and image decomposition models, Int. J. Comput. Vision, 63 (2005), 85-104.

[5]

J. F. Aujol and S. Kang, Color image decomposition and restoration, J. Vis. Commun. Image Represent, 17 (2006), 916-928. doi: 10.1016/j.jvcir.2005.02.001.

[6]

J. F. AujolG. AubertL. Blanc-Féraud and A. Chambolle, Image decomposition into a bounded variation component and an oscillating component, J. Math. Imaging Vision, 22 (2005), 71-88. doi: 10.1007/s10851-005-4783-8.

[7]

J. F. AujolG. GilboaT. Chan and S. Osher, Structure-texture image decomposition-modeling, algorithms, and parameter selection, Int. J. Comput. Vision, 67 (2006), 111-136.

[8]

S. BakerD. ScharsteinJ. P. LewisS. RothM. J. Black and R. Szeliski, A database and evaluation methodology for optical flow, Int. J. Comput. Vision, 92 (2011), 1-31. doi: 10.1007/s11263-010-0390-2.

[9]

M. BauerM. Bruveris and W. P. Michor, Overview of the geometries of shape spaces and diffeomorphism groups, J. Math. Imaging Vision, 50 (2014), 60-97. doi: 10.1007/s10851-013-0490-z.

[10]

B. Berkels, A. Effland and M. Rumpf, Time discrete geodesic paths in the space of images, SIAM J. Imaging Sci., 8(2015),1457-1488, arXiv: 1503.02001. doi: 10.1137/140970719.

[11]

A. BorziK. Ito and K. Kunisch, Optimal control formulation for determining optical flow, SIAM J. Sci. Comput., 24 (2002), 818-847. doi: 10.1137/S1064827501386481.

[12]

A. Bruhn, Variational Optic Flow Computation: Accurate Modeling and Efficient Numerics, PhD thesis 2006, Saarland University, Germany.

[13]

V. DuvalJ. F. Aujol and L. Vese, Mathematical modeling of textures: Application to color image decomposition with a projected gradient algorithm, J. Math. Imaging Vision, 37 (2010), 232-248. doi: 10.1007/s10851-010-0203-9.

[14]

M. Hanke and O. Scherzer, Inverse problems light: Numerical differentiation, Amer. Math. Monthly, 108 (2001), 512-521. doi: 10.2307/2695705.

[15]

B. K. P. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, 17 (1981), 185-203.

[16]

A. Jain and L. Younes, A kernel class allowing for fast computations in shape spaces induced by diffeomorphisms, J. Comput. and Applied Math., 245 (2013), 162-181. doi: 10.1016/j.cam.2012.10.019.

[17]

C. KirisitsL. Lang and O. Scherzer, Decomposition of optical flow on the sphere, GEM-Int. J. on Geomathematics, 5 (2014), 117-141. doi: 10.1007/s13137-013-0055-8.

[18]

T. Kohlberger, E. Memin and C. Schnörr, Variational dense motion estimation using the helmholtz decomposition, in Scale Space Methods in Computer Vision (eds. L. D. Griffin and M. Lillholm), Lecture Notes in Computer Science, 2695, Springer, Berlin, 2003,432-448. doi: 10.1007/3-540-44935-3_30.

[19]

J. Lee and J. C. Wright, A versatile parallel block-tridiagonal solver for spectral codes, MIT Plasma Science & Fusion Center, 2010.

[20]

B. McCaneK. NovinsD. Crannitch and B. Galvin, On benchmarking optical flow, Comput. Vision Image Understanding, 84 (2001), 126-143.

[21]

Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, vol 22, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/ulect/022.

[22]

M. I. Miller and L. Younes, Group actions, homeomorphisms, and matching: A general framework, Int. J. Comput. Vision, 41 (2001), 61-84.

[23]

J. K. O'Regan, Change blindness, E Cognitive Science, 2007.

[24]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, Applied Mathematical Sciences, vol 167, Springer, New York, 2009. doi: 10.1007/978-0-387-69277-7.

[25]

L. Vese and S. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19 (2003), 553-572. doi: 10.1023/A:1025384832106.

[26]

L. Vese and S. Osher, Image denoising and decomposition with total variation minimization and oscillatory functions, J. Math. Imaging Vision, 20 (2004), 7-18. doi: 10.1023/B:JMIV.0000011316.54027.6a.

[27]

C. M. WangK. C. Fan and C. T. Wang, Estimating optical flow by integrating multi-frame information, Journal of Information Science and Engineering, 24 (2008), 1719-1731.

[28]

J. WeickertA. BruhnT. Brox and N. Papenberg, A survey on variational optic flow methods for small displacements, Mathematical Models for Registration and Applications to Medical Imaging, Springer Berlin Heidelberg, 10 (2006), 103-136. doi: 10.1007/978-3-540-34767-5_5.

[29]

J. Weickert and C. Schnörr, A theoretical framework for convex regularizers in PDE-based computation of image motion, Int. J. Comput. Vision, 45 (2001), 245-264.

[30]

J. Weickert and C. Schnörr, Variational optic flow computation with a spatio-temporal smoothness constraint, J. Math. Imaging Vision, 14 (2001), 245-255.

[31]

J. YuanC. Schörr and G. Steidl, Simultaneous higher-order optical flow estimation and decomposition, SIAM J. Sci. and Stat. Comput., 29 (2007), 2283-2304 (electronic). doi: 10.1137/060660709.

[32]

J. Yuan, G. Steidl and C. Schnörr, Convex Hodge decomposition of image flows, in Pattern Recognition, Lecture Notes in Comput. Sci., 5096, Springer, Berlin, 2008,416-425. doi: 10.1007/978-3-540-69321-5_42.

[33]

J. YuanC. Schnörr and G. Steidl, Convex Hodge decomposition and regularization of image flows, J. Math. Imaging Vision, 33 (2009), 169-177. doi: 10.1007/s10851-008-0122-1.

show all references

References:
[1]

J. Abhau, Z. Belhachmi and O. Scherzer, On a decomposition model for optical flow, in Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science, 5681, Springer-Verlag, Berlin, Heidelberg, 2009,126-139. doi: 10.1007/978-3-642-03641-5_10.

[2]

R. AndreevO. Scherzer and W. Zulehner, Simultaneous optical flow and source estimation: Space-time discretization and preconditioning, Applied Numerical Mathematics, 96 (2015), 72-81. doi: 10.1016/j.apnum.2015.04.007.

[3]

G. Aubert and J. F. Aujol, Modeling very oscillating signals. Application to image processing, Appl. Math. Optim., 51 (2005), 163-182. doi: 10.1007/s00245-004-0812-z.

[4]

J. F. Aujol and A. Chambolle, Dual norms and image decomposition models, Int. J. Comput. Vision, 63 (2005), 85-104.

[5]

J. F. Aujol and S. Kang, Color image decomposition and restoration, J. Vis. Commun. Image Represent, 17 (2006), 916-928. doi: 10.1016/j.jvcir.2005.02.001.

[6]

J. F. AujolG. AubertL. Blanc-Féraud and A. Chambolle, Image decomposition into a bounded variation component and an oscillating component, J. Math. Imaging Vision, 22 (2005), 71-88. doi: 10.1007/s10851-005-4783-8.

[7]

J. F. AujolG. GilboaT. Chan and S. Osher, Structure-texture image decomposition-modeling, algorithms, and parameter selection, Int. J. Comput. Vision, 67 (2006), 111-136.

[8]

S. BakerD. ScharsteinJ. P. LewisS. RothM. J. Black and R. Szeliski, A database and evaluation methodology for optical flow, Int. J. Comput. Vision, 92 (2011), 1-31. doi: 10.1007/s11263-010-0390-2.

[9]

M. BauerM. Bruveris and W. P. Michor, Overview of the geometries of shape spaces and diffeomorphism groups, J. Math. Imaging Vision, 50 (2014), 60-97. doi: 10.1007/s10851-013-0490-z.

[10]

B. Berkels, A. Effland and M. Rumpf, Time discrete geodesic paths in the space of images, SIAM J. Imaging Sci., 8(2015),1457-1488, arXiv: 1503.02001. doi: 10.1137/140970719.

[11]

A. BorziK. Ito and K. Kunisch, Optimal control formulation for determining optical flow, SIAM J. Sci. Comput., 24 (2002), 818-847. doi: 10.1137/S1064827501386481.

[12]

A. Bruhn, Variational Optic Flow Computation: Accurate Modeling and Efficient Numerics, PhD thesis 2006, Saarland University, Germany.

[13]

V. DuvalJ. F. Aujol and L. Vese, Mathematical modeling of textures: Application to color image decomposition with a projected gradient algorithm, J. Math. Imaging Vision, 37 (2010), 232-248. doi: 10.1007/s10851-010-0203-9.

[14]

M. Hanke and O. Scherzer, Inverse problems light: Numerical differentiation, Amer. Math. Monthly, 108 (2001), 512-521. doi: 10.2307/2695705.

[15]

B. K. P. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, 17 (1981), 185-203.

[16]

A. Jain and L. Younes, A kernel class allowing for fast computations in shape spaces induced by diffeomorphisms, J. Comput. and Applied Math., 245 (2013), 162-181. doi: 10.1016/j.cam.2012.10.019.

[17]

C. KirisitsL. Lang and O. Scherzer, Decomposition of optical flow on the sphere, GEM-Int. J. on Geomathematics, 5 (2014), 117-141. doi: 10.1007/s13137-013-0055-8.

[18]

T. Kohlberger, E. Memin and C. Schnörr, Variational dense motion estimation using the helmholtz decomposition, in Scale Space Methods in Computer Vision (eds. L. D. Griffin and M. Lillholm), Lecture Notes in Computer Science, 2695, Springer, Berlin, 2003,432-448. doi: 10.1007/3-540-44935-3_30.

[19]

J. Lee and J. C. Wright, A versatile parallel block-tridiagonal solver for spectral codes, MIT Plasma Science & Fusion Center, 2010.

[20]

B. McCaneK. NovinsD. Crannitch and B. Galvin, On benchmarking optical flow, Comput. Vision Image Understanding, 84 (2001), 126-143.

[21]

Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, vol 22, American Mathematical Society, Providence, RI, 2001. doi: 10.1090/ulect/022.

[22]

M. I. Miller and L. Younes, Group actions, homeomorphisms, and matching: A general framework, Int. J. Comput. Vision, 41 (2001), 61-84.

[23]

J. K. O'Regan, Change blindness, E Cognitive Science, 2007.

[24]

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational Methods in Imaging, Applied Mathematical Sciences, vol 167, Springer, New York, 2009. doi: 10.1007/978-0-387-69277-7.

[25]

L. Vese and S. Osher, Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Comput., 19 (2003), 553-572. doi: 10.1023/A:1025384832106.

[26]

L. Vese and S. Osher, Image denoising and decomposition with total variation minimization and oscillatory functions, J. Math. Imaging Vision, 20 (2004), 7-18. doi: 10.1023/B:JMIV.0000011316.54027.6a.

[27]

C. M. WangK. C. Fan and C. T. Wang, Estimating optical flow by integrating multi-frame information, Journal of Information Science and Engineering, 24 (2008), 1719-1731.

[28]

J. WeickertA. BruhnT. Brox and N. Papenberg, A survey on variational optic flow methods for small displacements, Mathematical Models for Registration and Applications to Medical Imaging, Springer Berlin Heidelberg, 10 (2006), 103-136. doi: 10.1007/978-3-540-34767-5_5.

[29]

J. Weickert and C. Schnörr, A theoretical framework for convex regularizers in PDE-based computation of image motion, Int. J. Comput. Vision, 45 (2001), 245-264.

[30]

J. Weickert and C. Schnörr, Variational optic flow computation with a spatio-temporal smoothness constraint, J. Math. Imaging Vision, 14 (2001), 245-255.

[31]

J. YuanC. Schörr and G. Steidl, Simultaneous higher-order optical flow estimation and decomposition, SIAM J. Sci. and Stat. Comput., 29 (2007), 2283-2304 (electronic). doi: 10.1137/060660709.

[32]

J. Yuan, G. Steidl and C. Schnörr, Convex Hodge decomposition of image flows, in Pattern Recognition, Lecture Notes in Comput. Sci., 5096, Springer, Berlin, 2008,416-425. doi: 10.1007/978-3-540-69321-5_42.

[33]

J. YuanC. Schnörr and G. Steidl, Convex Hodge decomposition and regularization of image flows, J. Math. Imaging Vision, 33 (2009), 169-177. doi: 10.1007/s10851-008-0122-1.

Figure 1.  $f(x,t)=x(1-x)(1-t)$ from (7). Level lines of $f$ are parametrized by $(\Psi(x,t),t)$
Figure 2.  $g(t)=\exp \left\{-\frac{1}{\beta}(1-t)^\beta\right\}$
Figure 3.  Color Wheel
Figure 4.  ${\vec u^{\left( 2 \right)}}$ at different frequencies of rotations: $2$, $4$ and $8 \times$ faster than the original motion frequency. $\alpha^{(1)}=1$, $\alpha^{(2)}=\frac{1}{4}$. The intensity of ${\vec u^{\left( 2 \right)}}$ increases when the frequency of rotation is increased
Figure 6.  ${\vec u^{\left( 1 \right)}}$: Movement of a Ferris wheel and people walking in the foreground (top left). ${\vec u^{\left( 2 \right)}}$ consists of blinking lights and the reflections of the wheel (top right). The third image (bottom) is a reference frame
Figure 5.  The dynamic sequence consists of the smooth (translation like) motion of a cube and an oscillating background. The oscillation has a periodicity of four frames and takes place along the diagonal direction from the bottom left to the top right, moving at a rate of 5% of the frame size in each frame. The proposed model decomposes the motion, obtaining the global movement of the cube in ${\vec u^{\left( 1 \right)}}$ (left) and the background movement exclusively in ${\vec u^{\left( 2 \right)}}$ (right).
Figure 8.  The two frames of the flickering sequence containing information (top), the difference between these two frames (down left), and the ${\vec u^{\left( 2 \right)}}$ flow field resulting from the proposed approach (down right). As predicted in Section 3 and Appendix A the ${\vec u^{\left( 1 \right)}}$ component is negligible, instead ${\vec u^{\left( 2 \right)}}$ detects the change of intensity across the blank sheet.
Figure 7.  Result with Horn-Schunck
Table 1.  Continuous notation
$\vec x = (x_1,x_2)$vector in two-dimensional Euclidean space
$\partial_k = \frac{\partial}{\partial x_k}$differentiation with respect to spatial variable $x_k$
$\partial_t = \frac{\partial}{\partial t}$differentiation with respect to time
$\nabla = (\partial_1, \partial_2)^T$gradient in space
$\nabla_3 = (\partial_1, \partial_2, \partial_t)^T$gradient in space and time
$\nabla \cdot = \partial_1 + \partial_2$divergence in space
$\nabla_3 \cdot = \partial_1 + \partial_2 + \partial_t$divergence in space and time
$\vec{n}$outward pointing normal vector to $\Omega$
$f$input sequence
$f(\cdot,t)$movie frame
${\vec u^{\left( i \right)}}$optical flow module, $i=1,2$
$\vec u = {\vec u^{\left( 1 \right)}} + {\vec u^{\left( 2 \right)}}$optical flow
$u_j^{\left( i \right)}$$j$-th optical flow component of the $i$-th module
$\widehat{u}(\cdot,t) = \int_0^t u(\cdot,\tau)\,{\rm{d}} \tau$primitive of $u$
$\widehat{\widehat{u}}(\cdot,t) = -\int_t^1 \widehat{u}(\cdot,\tau)\,{\rm{d}} \tau$2nd primitive of $u$ -note that $\partial_t \widehat{\widehat{u}}(\cdot,t)=\widehat{u}(\cdot,t)$
$\vec x = (x_1,x_2)$vector in two-dimensional Euclidean space
$\partial_k = \frac{\partial}{\partial x_k}$differentiation with respect to spatial variable $x_k$
$\partial_t = \frac{\partial}{\partial t}$differentiation with respect to time
$\nabla = (\partial_1, \partial_2)^T$gradient in space
$\nabla_3 = (\partial_1, \partial_2, \partial_t)^T$gradient in space and time
$\nabla \cdot = \partial_1 + \partial_2$divergence in space
$\nabla_3 \cdot = \partial_1 + \partial_2 + \partial_t$divergence in space and time
$\vec{n}$outward pointing normal vector to $\Omega$
$f$input sequence
$f(\cdot,t)$movie frame
${\vec u^{\left( i \right)}}$optical flow module, $i=1,2$
$\vec u = {\vec u^{\left( 1 \right)}} + {\vec u^{\left( 2 \right)}}$optical flow
$u_j^{\left( i \right)}$$j$-th optical flow component of the $i$-th module
$\widehat{u}(\cdot,t) = \int_0^t u(\cdot,\tau)\,{\rm{d}} \tau$primitive of $u$
$\widehat{\widehat{u}}(\cdot,t) = -\int_t^1 \widehat{u}(\cdot,\tau)\,{\rm{d}} \tau$2nd primitive of $u$ -note that $\partial_t \widehat{\widehat{u}}(\cdot,t)=\widehat{u}(\cdot,t)$
Table 2.  Discrete Notation
$f= f(r,s,t) \in \mathbb{R}^{M \times N \times T}$input sequence
${\vec u^{\left( i \right)}} = {\vec u^{\left( i \right)}}(r,s,t;k) \in \mathbb{R}^{M \times N \times T \times K \times 2}$discrete optical flow approximating the
continuous flow ${\vec u^{\left( i \right)}}$ at $(\frac{r}{M-1},\frac{s}{N-1},\frac{t}{T-1})$
$\partial_k^h$finite difference approximation in direction $x_k$
$\partial_t^h$finite difference approximation in direction $t$
$\Delta_x=\frac{1}{M-1}$, $\Delta_y=\frac{1}{N-1}$ and $\Delta_t=\frac{1}{T-1}$Discretization
$ \hat u_j^{\left( 2 \right)}(r,s,t;k) = \Delta_t \sum_{\tau=1}^t u_j^{\left( 2 \right)}(r,s,\tau;k)$, $j=1,2$finite difference approximation of $\widehat{u}(\cdot,t)$
$ \hat {\hat {u}}_j^{\left( 2 \right)}(r,s,t;k)= - \Delta_t \sum_{\tau = t}^T \hat u_j^{\left( 2 \right)}(r,s,\tau;k)$finite difference approximation of $\widehat{\widehat{u}}(\cdot,t)$
$f= f(r,s,t) \in \mathbb{R}^{M \times N \times T}$input sequence
${\vec u^{\left( i \right)}} = {\vec u^{\left( i \right)}}(r,s,t;k) \in \mathbb{R}^{M \times N \times T \times K \times 2}$discrete optical flow approximating the
continuous flow ${\vec u^{\left( i \right)}}$ at $(\frac{r}{M-1},\frac{s}{N-1},\frac{t}{T-1})$
$\partial_k^h$finite difference approximation in direction $x_k$
$\partial_t^h$finite difference approximation in direction $t$
$\Delta_x=\frac{1}{M-1}$, $\Delta_y=\frac{1}{N-1}$ and $\Delta_t=\frac{1}{T-1}$Discretization
$ \hat u_j^{\left( 2 \right)}(r,s,t;k) = \Delta_t \sum_{\tau=1}^t u_j^{\left( 2 \right)}(r,s,\tau;k)$, $j=1,2$finite difference approximation of $\widehat{u}(\cdot,t)$
$ \hat {\hat {u}}_j^{\left( 2 \right)}(r,s,t;k)= - \Delta_t \sum_{\tau = t}^T \hat u_j^{\left( 2 \right)}(r,s,\tau;k)$finite difference approximation of $\widehat{\widehat{u}}(\cdot,t)$
Table 3.  Comparison of squared residuals over space and time $\mathcal{E}$ between Weickert-Schnörr and the proposed method
Weickert-SchnörrProposed model
Hamburg Taxi1374.91021
RubberWhale4459.73046.8
Hydrangea8533.37647.2
DogDance9995.48217.6
Walking8077.55944.3
Weickert-SchnörrProposed model
Hamburg Taxi1374.91021
RubberWhale4459.73046.8
Hydrangea8533.37647.2
DogDance9995.48217.6
Walking8077.55944.3
[1]

Raimund Bürger, Gerardo Chowell, Pep Mulet, Luis M. Villada. Modelling the spatial-temporal progression of the 2009 A/H1N1 influenza pandemic in Chile. Mathematical Biosciences & Engineering, 2016, 13 (1) : 43-65. doi: 10.3934/mbe.2016.13.43

[2]

Daniil Kazantsev, William M. Thompson, William R. B. Lionheart, Geert Van Eyndhoven, Anders P. Kaestner, Katherine J. Dobson, Philip J. Withers, Peter D. Lee. 4D-CT reconstruction with unified spatial-temporal patch-based regularization. Inverse Problems & Imaging, 2015, 9 (2) : 447-467. doi: 10.3934/ipi.2015.9.447

[3]

Yoon-Sik Cho, Aram Galstyan, P. Jeffrey Brantingham, George Tita. Latent self-exciting point process model for spatial-temporal networks. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1335-1354. doi: 10.3934/dcdsb.2014.19.1335

[4]

Thomas Schuster, Joachim Weickert. On the application of projection methods for computing optical flow fields. Inverse Problems & Imaging, 2007, 1 (4) : 673-690. doi: 10.3934/ipi.2007.1.673

[5]

Umberto Mosco. Impulsive motion on synchronized spatial temporal grids. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6069-6098. doi: 10.3934/dcds.2017261

[6]

Lukas F. Lang, Otmar Scherzer. Optical flow on evolving sphere-like surfaces. Inverse Problems & Imaging, 2017, 11 (2) : 305-338. doi: 10.3934/ipi.2017015

[7]

Andrey Shishkov. Large solutions of parabolic logistic equation with spatial and temporal degeneracies. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 895-907. doi: 10.3934/dcdss.2017045

[8]

Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163

[9]

Iordanka N. Panayotova, Pai Song, John P. McHugh. Spatial stability of horizontally sheared flow. Conference Publications, 2013, 2013 (special) : 611-618. doi: 10.3934/proc.2013.2013.611

[10]

Tom Goldstein, Xavier Bresson, Stan Osher. Global minimization of Markov random fields with applications to optical flow. Inverse Problems & Imaging, 2012, 6 (4) : 623-644. doi: 10.3934/ipi.2012.6.623

[11]

Xavier Litrico, Vincent Fromion. Modal decomposition of linearized open channel flow. Networks & Heterogeneous Media, 2009, 4 (2) : 325-357. doi: 10.3934/nhm.2009.4.325

[12]

Lijian Jiang, Yalchin Efendiev, Victor Ginting. Multiscale methods for parabolic equations with continuum spatial scales. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 833-859. doi: 10.3934/dcdsb.2007.8.833

[13]

Julie Lee, J. C. Song. Spatial decay bounds in a linearized magnetohydrodynamic channel flow. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1349-1361. doi: 10.3934/cpaa.2013.12.1349

[14]

Liselott Flodén, Jens Persson. Homogenization of nonlinear dissipative hyperbolic problems exhibiting arbitrarily many spatial and temporal scales. Networks & Heterogeneous Media, 2016, 11 (4) : 627-653. doi: 10.3934/nhm.2016012

[15]

Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457

[16]

Zalman Balanov, Carlos García-Azpeitia, Wieslaw Krawcewicz. On variational and topological methods in nonlinear difference equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2813-2844. doi: 10.3934/cpaa.2018133

[17]

Edson Pindza, Francis Youbi, Eben Maré, Matt Davison. Barycentric spectral domain decomposition methods for valuing a class of infinite activity Lévy models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 625-643. doi: 10.3934/dcdss.2019040

[18]

Xi-Hong Yan. A new convergence proof of augmented Lagrangian-based method with full Jacobian decomposition for structured variational inequalities. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 45-54. doi: 10.3934/naco.2016.6.45

[19]

O. Chadli, Z. Chbani, H. Riahi. Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 185-196. doi: 10.3934/dcds.1999.5.185

[20]

Raffaella Servadei, Enrico Valdinoci. Variational methods for non-local operators of elliptic type. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2105-2137. doi: 10.3934/dcds.2013.33.2105

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (8)
  • HTML views (18)
  • Cited by (0)

Other articles
by authors

[Back to Top]