October 2018, 23(8): 2989-3021. doi: 10.3934/dcdsb.2017183

Stability of dislocation networks of low angle grain boundaries using a continuum energy formulation

1. 

Department of Mathematics, Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong

2. 

Department of Mathematics, University of Connecticut 341 Mansfield Road, Storrs, CT 06269, USA

Received  June 2016 Revised  June 2017 Published  July 2017

Fund Project: The first author is partially supported by the Hong Kong Research Grants Council General Research Fund 606313. The second author thanks HKUST for hospitality

Low angle grain boundaries can be modeled as arrays of line defects (dislocations) in crystalline materials. The classical continuum models for energetics and dynamics of curved grain boundaries are mainly based on those with equilibrium dislocation structures without the long-range elastic interaction, leading to a capillary force proportional to the local curvature of the grain boundary. The new continuum model recently derived by Zhu and Xiang (J. Mech. Phys. Solids, 69,175-194,2014) incorporates both the long-range dislocation interaction energy and the local dislocation line energy, and enables the study of low angle grain boundaries with non-equilibrium dislocation structures that involves the long-range elastic interaction. Using this new energy formulation, we show that the orthogonal network of two arrays of screw dislocations on a planar twist low angle grain boundary is always stable subject to both perturbations of the constituent dislocations within the grain boundary and the perturbations of the grain boundary itself.

Citation: Yang Xiang, Xiaodong Yan. Stability of dislocation networks of low angle grain boundaries using a continuum energy formulation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2989-3021. doi: 10.3934/dcdsb.2017183
References:
[1]

A. ArsenlisW. CaiM. TangM. RheeT. OppelstrupG. HommesT. G. Pierce and V. V. Bulatov, Enabling strain hardening simulations with dislocation dynamics, Modell. Simul. Mater. Sci. Eng., 15 (2007), 553-595. doi: 10.1088/0965-0393/15/6/001.

[2]

Á. Bényi and T. Oh, The Sobolev inequality on the torus revisited, Publicationes mathematicae, 83 (2013), 359-374. doi: 10.5486/PMD.2013.5529.

[3]

B. A. Bilby, Bristol Conference Report on Defects in Crystalline Materials Physical Society, London, 1955,123.

[4]

F. C. Frank, The resultant content of dislocations in an arbitrary intercrystalline boundary, in Symposium on the Plastic Deformation of Crystalline Solids, Office of Naval Research, Pittsburgh, 1950,150-154

[5]

N. M. GhoniemS. H. Tong and L. Z. Sun, Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys. Rev. B, 61 (2000), 913-927. doi: 10.1103/PhysRevB.61.913.

[6]

E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, American Mathematical Society, 1999.

[7]

C. Herring, Surface tension as a motivation for sintering, Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, (1999), 143-179. doi: 10.1007/978-3-642-59938-5_2.

[8]

J. P. Hirth and J. Lothe, Theory of Dislocations 2nd edition, John Wiley, New York, 1982.

[9]

L. P. KubinG. CanovaM. Condat and B. Devincre, Dislocation microstructures and plastic flow: A 3d simulation, Solid State Phenomena, 23/24 (1992), 455-472. doi: 10.4028/www.scientific.net/SSP.23-24.455.

[10]

A. T. LimD. J. Srolovitz and M. Haataja, Low-angle grain boundary migration in the presence of extrinsic dislocations, Acta Mater., 57 (2009), 5013-5022. doi: 10.1016/j.actamat.2009.07.003.

[11]

A. T. LimM. HaatajaW. Cai and D. J. Srolovitz, Stress-driven migration of simple low-angle mixed grain boundaries, Acta Mater., 60 (2012), 1395-1407. doi: 10.1016/j.actamat.2011.11.032.

[12]

A. A. Pihlaja, Modeling Grain Boundary Structures Using Energy Minimization Ph. D. thesis, New York University, 2000.

[13]

S. S. QuekY. Xiang and D. J. Srolovitz, Loss of interface coherency around a misfitting spherical inclusion, Acta Mater., 59 (2011), 5398-5410. doi: 10.1016/j.actamat.2011.05.012.

[14]

W. Read and W. Shockley, Dislocation models of crystal grain boundaries, Phys. Rev., 78 (1950), 275-289. doi: 10.1103/PhysRev.78.275.

[15]

Strichartz, Improved sobolev inequalities, Trans. Amer. Math. Soc., 279 (1983), 397-407. doi: 10.1090/S0002-9947-1983-0704623-6.

[16]

A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials Clarendon Press, Oxford, 1995.

[17]

A. P. Sutton and V. Vitek, On the structure of tilt grain boundaries in cubic metals Ⅰ. Symmetical tilt boundaries, Philos. Trans. Roy. Soc. Lond. A, 309 (1983), 1-36. doi: 10.1098/rsta.1983.0020.

[18]

Y. Xiang, Modeling dislocations at different scales, Commun. Comput. Phys., 1 (2006), 383-424.

[19]

Y. XiangL. T. ChengD. J. Srolovitz and W. E, A level set method for dislocation dynamics, Acta Mater., 51 (2003), 5499-5518. doi: 10.1016/S1359-6454(03)00415-4.

[20]

L. C. ZhangY. J. Gu and Y. Xiang, Energy of low angle grain boundaries based on continuum dislocation structure, Acta Mater., 126 (2017), 11-24. doi: 10.1016/j.actamat.2016.12.035.

[21]

X. H. Zhu and Y. Xiang, Stabilizing force on perturbed grainboundaries using dislocation model, Scripta Mater., 64 (2011), 5-8. doi: 10.1016/j.scriptamat.2010.08.050.

[22]

X. H. Zhu and Y. Xiang, Continuum frmework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries, J. Mech. Phys. Solid, 69 (2014), 175-194. doi: 10.1016/j.jmps.2014.05.005.

show all references

References:
[1]

A. ArsenlisW. CaiM. TangM. RheeT. OppelstrupG. HommesT. G. Pierce and V. V. Bulatov, Enabling strain hardening simulations with dislocation dynamics, Modell. Simul. Mater. Sci. Eng., 15 (2007), 553-595. doi: 10.1088/0965-0393/15/6/001.

[2]

Á. Bényi and T. Oh, The Sobolev inequality on the torus revisited, Publicationes mathematicae, 83 (2013), 359-374. doi: 10.5486/PMD.2013.5529.

[3]

B. A. Bilby, Bristol Conference Report on Defects in Crystalline Materials Physical Society, London, 1955,123.

[4]

F. C. Frank, The resultant content of dislocations in an arbitrary intercrystalline boundary, in Symposium on the Plastic Deformation of Crystalline Solids, Office of Naval Research, Pittsburgh, 1950,150-154

[5]

N. M. GhoniemS. H. Tong and L. Z. Sun, Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys. Rev. B, 61 (2000), 913-927. doi: 10.1103/PhysRevB.61.913.

[6]

E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, American Mathematical Society, 1999.

[7]

C. Herring, Surface tension as a motivation for sintering, Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, (1999), 143-179. doi: 10.1007/978-3-642-59938-5_2.

[8]

J. P. Hirth and J. Lothe, Theory of Dislocations 2nd edition, John Wiley, New York, 1982.

[9]

L. P. KubinG. CanovaM. Condat and B. Devincre, Dislocation microstructures and plastic flow: A 3d simulation, Solid State Phenomena, 23/24 (1992), 455-472. doi: 10.4028/www.scientific.net/SSP.23-24.455.

[10]

A. T. LimD. J. Srolovitz and M. Haataja, Low-angle grain boundary migration in the presence of extrinsic dislocations, Acta Mater., 57 (2009), 5013-5022. doi: 10.1016/j.actamat.2009.07.003.

[11]

A. T. LimM. HaatajaW. Cai and D. J. Srolovitz, Stress-driven migration of simple low-angle mixed grain boundaries, Acta Mater., 60 (2012), 1395-1407. doi: 10.1016/j.actamat.2011.11.032.

[12]

A. A. Pihlaja, Modeling Grain Boundary Structures Using Energy Minimization Ph. D. thesis, New York University, 2000.

[13]

S. S. QuekY. Xiang and D. J. Srolovitz, Loss of interface coherency around a misfitting spherical inclusion, Acta Mater., 59 (2011), 5398-5410. doi: 10.1016/j.actamat.2011.05.012.

[14]

W. Read and W. Shockley, Dislocation models of crystal grain boundaries, Phys. Rev., 78 (1950), 275-289. doi: 10.1103/PhysRev.78.275.

[15]

Strichartz, Improved sobolev inequalities, Trans. Amer. Math. Soc., 279 (1983), 397-407. doi: 10.1090/S0002-9947-1983-0704623-6.

[16]

A. P. Sutton and R. W. Balluffi, Interfaces in Crystalline Materials Clarendon Press, Oxford, 1995.

[17]

A. P. Sutton and V. Vitek, On the structure of tilt grain boundaries in cubic metals Ⅰ. Symmetical tilt boundaries, Philos. Trans. Roy. Soc. Lond. A, 309 (1983), 1-36. doi: 10.1098/rsta.1983.0020.

[18]

Y. Xiang, Modeling dislocations at different scales, Commun. Comput. Phys., 1 (2006), 383-424.

[19]

Y. XiangL. T. ChengD. J. Srolovitz and W. E, A level set method for dislocation dynamics, Acta Mater., 51 (2003), 5499-5518. doi: 10.1016/S1359-6454(03)00415-4.

[20]

L. C. ZhangY. J. Gu and Y. Xiang, Energy of low angle grain boundaries based on continuum dislocation structure, Acta Mater., 126 (2017), 11-24. doi: 10.1016/j.actamat.2016.12.035.

[21]

X. H. Zhu and Y. Xiang, Stabilizing force on perturbed grainboundaries using dislocation model, Scripta Mater., 64 (2011), 5-8. doi: 10.1016/j.scriptamat.2010.08.050.

[22]

X. H. Zhu and Y. Xiang, Continuum frmework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries, J. Mech. Phys. Solid, 69 (2014), 175-194. doi: 10.1016/j.jmps.2014.05.005.

Figure 1.  (a) Schematic illustration of a twist boundary. (b) Dislocation network consisting of two orthogonally intersecting screw dislocation arrays on a low angle twist boundary. For this twist boundary, across each horizontal dislocation (with Burgers vector $\mathbf b_1$) in the upper grain, the atoms above it shift to the left by $b_1/2$ and those below it shift to the right by $b_1/2$ with respect to the lower grain; across each vertical dislocation (with Burgers vector $\mathbf b_2$) in the upper grain, the atoms on its left shift downward by $b_2/2$ and those on its right shift upward by $b_2/2$ with respect to the lower grain. The net effect is making the upper grain rotate in the counterclockwise direction with respect to the lower grain
[1]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[2]

Akio Ito, Nobuyuki Kenmochi, Noriaki Yamazaki. Global solvability of a model for grain boundary motion with constraint. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 127-146. doi: 10.3934/dcdss.2012.5.127

[3]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[4]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[5]

Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic & Related Models, 2008, 1 (4) : 591-617. doi: 10.3934/krm.2008.1.591

[6]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[7]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[8]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[9]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[10]

Ken Shirakawa, Hiroshi Watanabe. Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 139-159. doi: 10.3934/dcdss.2014.7.139

[11]

Ken Shirakawa, Hiroshi Watanabe. Large-time behavior for a PDE model of isothermal grain boundary motion with a constraint. Conference Publications, 2015, 2015 (special) : 1009-1018. doi: 10.3934/proc.2015.1009

[12]

Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, Shlomo Ta'asan. An entropy based theory of the grain boundary character distribution. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 427-454. doi: 10.3934/dcds.2011.30.427

[13]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[14]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[15]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

[16]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[17]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[18]

Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227

[19]

Gabriella Bretti, Ciro D’Apice, Rosanna Manzo, Benedetto Piccoli. A continuum-discrete model for supply chains dynamics. Networks & Heterogeneous Media, 2007, 2 (4) : 661-694. doi: 10.3934/nhm.2007.2.661

[20]

G. Idone, A. Maugeri. Variational inequalities and a transport planning for an elastic and continuum model. Journal of Industrial & Management Optimization, 2005, 1 (1) : 81-86. doi: 10.3934/jimo.2005.1.81

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (56)
  • HTML views (665)
  • Cited by (0)

Other articles
by authors

[Back to Top]