
-
Previous Article
Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions
- DCDS-B Home
- This Issue
-
Next Article
Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth
On the scale dynamics of the tropical cyclone intensity
1. | Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405, USA |
2. | Department of Mathematics, Sichuan University, Sichuan Sheng, China |
This study examines the dynamics of tropical cyclone (TC) development in a TC scale framework. It is shown that this TC-scale dynamics contains the maximum potential intensity (MPI) limit as an asymptotically stable point for which the Coriolis force and the tropospheric stratification are two key parameters responsible for the bifurcation of TC development. In particular, it is found that the Coriolis force breaks the symmetry of the TC development and results in a larger basin of attraction toward the cyclonic (anticyclonic) stable point in the Northern (Southern) Hemisphere. Despite the sensitive dependence of intensity bifurcation on these two parameters, the structurally stable property of the MPI critical point is maintained for a wide range of parameters.
References:
[1] |
B. R. Brown and G. J. Hakim,
Variability and predictability of a three-dimensional hurricane in statistical equilibrium, J. Atmos. Sci., 70 (2013), 1806-1820.
doi: 10.1175/JAS-D-12-0112.1. |
[2] |
G. H. Bryan and R. Rotunno,
The maximum intensity of tropical cyclones in axisymmetric numerical model simulations, Mon. Wea. Rev, 137 (2009), 1770-1789.
doi: 10.1175/2008MWR2709.1. |
[3] |
J. G. Charney and A. Eliassen,
On the growth of the hurricane depression, J. Atmos. Sci, 21 (1964), 68-75.
doi: 10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2. |
[4] |
K. A. Emanuel,
A statistical analysis of tropical cyclone intensity, Monthly Weather Review, 128 (2000), 1139-1152.
doi: 10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2. |
[5] |
K. A. Emanuel,
An air-sea interaction theory for tropical cyclones. part i: Steady-state maintenance, J. Atmos. Sci, 43 (1986), 585-605.
doi: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2. |
[6] |
K. A. Emanuel,
The Maximum Intensity of Hurricanes, J. Atmos. Sci, 45 (1986), 1143-1155.
doi: 10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2. |
[7] |
M. Ferrara,, F. Groff, Z. Moon, K. Keshavamurthy, S. M. Robeson and C. Kieu, Large-scale control of the lower stratosphere on variability of tropical cyclone intensity, Geophys. Res. Lett., 44 (2017), 4313-4323. Google Scholar |
[8] |
G. J. Hakim,
The mean state of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci, 68 (2011), 1364-1376.
doi: 10.1175/2010JAS3644.1. |
[9] |
G. J. Hakim,
The variability and predictability of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci, 70 (2013), 993-1005.
doi: 10.1175/JAS-D-12-0188.1. |
[10] |
K. A. Hill and G. M. Lackmann,
The impact of future climate change on TC intensity and structure: A downscaling approach, Journal of Climate, 24 (2011), 4644-4661.
doi: 10.1175/2011JCLI3761.1. |
[11] |
C. Kieu,
Hurricane maximum potential intensity equilibrium, Q.J.R. Meteorol. Soc., 141 (2015), 2471-2480.
doi: 10.1002/qj.2556. |
[12] |
C. Kieu and Z. Moon,
Hurricane intensity predictability, Bull. Amer. Meteo. Soc., 97 (2016), 1847-1857.
doi: 10.1175/BAMS-D-15-00168.1. |
[13] |
C. Kieu, H. Chen and D. L. Zhang, An examination of the pressure-wind relationship for intense tropical cyclones, Wea. and Forecasting, 25 (2010), 895-907. Google Scholar |
[14] |
Y. Liu, D.-L. Zhang and M. K. Yau, A Multiscale Numerical Study of Hurricane Andrew Part Ⅱ: Kinematics and Inner-Core Structures, J. Atmos. Sci, 127 (1999), 2597-2616. Google Scholar |
[15] |
T. Ma, Topology of Manifolds Science Press, Beijing. , 2007. Google Scholar |
[16] |
J. W. Milnor,
Topology from the Differentiable Viewpoint Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va. 1965. |
[17] |
Y. Ogura and N. A. Phillips, Scale analysis of deep and shallow convection in the atmophere, J. Atmos. Sci, 19 (1962), 173-179. Google Scholar |
[18] |
R. Rotunno and K. A. Emanuel, An airsea interaction theory for tropical cyclones. part ii: Evolutionary study using a nonhydrostatic axisymmetric numerical model, J. Atmos. Sci, 44 (1987), 542-561. Google Scholar |
[19] |
W. Shen, R. E. Tuleya and I. Ginis, A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming, J. Climate, 13 (2000), 109-121. Google Scholar |
[20] |
R. K. Smith, G. Kilroy and M. T. Montgomery,
Why do model tropical cyclones intensify more rapidly at low latitudes, Journal of the Atmospheric Sciences, 72 (2015), 1783-1840.
doi: 10.1175/JAS-D-14-0044.1. |
[21] |
R. Wilhelmson and Y. Ogura,
The pressure perturbation and the numerical modeling of a cloud, Journal of the Atmospheric Sciences, 29 (1972), 1295-1307.
doi: 10.1175/1520-0469(1972)029<1295:TPPATN>2.0.CO;2. |
[22] |
H. E. Willoughby,
Forced secondary circulations in hurricanes, J. Geophys. Res, 84 (1979), 3173-3183.
doi: 10.1029/JC084iC06p03173. |
[23] |
H. E. Willoughby,
Gradient Balance in Tropical Cyclones, J. Atmos. Sci., 47 (1990), 265-274.
doi: 10.1175/1520-0469(1990)047<0265:GBITC>2.0.CO;2. |
show all references
References:
[1] |
B. R. Brown and G. J. Hakim,
Variability and predictability of a three-dimensional hurricane in statistical equilibrium, J. Atmos. Sci., 70 (2013), 1806-1820.
doi: 10.1175/JAS-D-12-0112.1. |
[2] |
G. H. Bryan and R. Rotunno,
The maximum intensity of tropical cyclones in axisymmetric numerical model simulations, Mon. Wea. Rev, 137 (2009), 1770-1789.
doi: 10.1175/2008MWR2709.1. |
[3] |
J. G. Charney and A. Eliassen,
On the growth of the hurricane depression, J. Atmos. Sci, 21 (1964), 68-75.
doi: 10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2. |
[4] |
K. A. Emanuel,
A statistical analysis of tropical cyclone intensity, Monthly Weather Review, 128 (2000), 1139-1152.
doi: 10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2. |
[5] |
K. A. Emanuel,
An air-sea interaction theory for tropical cyclones. part i: Steady-state maintenance, J. Atmos. Sci, 43 (1986), 585-605.
doi: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2. |
[6] |
K. A. Emanuel,
The Maximum Intensity of Hurricanes, J. Atmos. Sci, 45 (1986), 1143-1155.
doi: 10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2. |
[7] |
M. Ferrara,, F. Groff, Z. Moon, K. Keshavamurthy, S. M. Robeson and C. Kieu, Large-scale control of the lower stratosphere on variability of tropical cyclone intensity, Geophys. Res. Lett., 44 (2017), 4313-4323. Google Scholar |
[8] |
G. J. Hakim,
The mean state of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci, 68 (2011), 1364-1376.
doi: 10.1175/2010JAS3644.1. |
[9] |
G. J. Hakim,
The variability and predictability of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci, 70 (2013), 993-1005.
doi: 10.1175/JAS-D-12-0188.1. |
[10] |
K. A. Hill and G. M. Lackmann,
The impact of future climate change on TC intensity and structure: A downscaling approach, Journal of Climate, 24 (2011), 4644-4661.
doi: 10.1175/2011JCLI3761.1. |
[11] |
C. Kieu,
Hurricane maximum potential intensity equilibrium, Q.J.R. Meteorol. Soc., 141 (2015), 2471-2480.
doi: 10.1002/qj.2556. |
[12] |
C. Kieu and Z. Moon,
Hurricane intensity predictability, Bull. Amer. Meteo. Soc., 97 (2016), 1847-1857.
doi: 10.1175/BAMS-D-15-00168.1. |
[13] |
C. Kieu, H. Chen and D. L. Zhang, An examination of the pressure-wind relationship for intense tropical cyclones, Wea. and Forecasting, 25 (2010), 895-907. Google Scholar |
[14] |
Y. Liu, D.-L. Zhang and M. K. Yau, A Multiscale Numerical Study of Hurricane Andrew Part Ⅱ: Kinematics and Inner-Core Structures, J. Atmos. Sci, 127 (1999), 2597-2616. Google Scholar |
[15] |
T. Ma, Topology of Manifolds Science Press, Beijing. , 2007. Google Scholar |
[16] |
J. W. Milnor,
Topology from the Differentiable Viewpoint Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va. 1965. |
[17] |
Y. Ogura and N. A. Phillips, Scale analysis of deep and shallow convection in the atmophere, J. Atmos. Sci, 19 (1962), 173-179. Google Scholar |
[18] |
R. Rotunno and K. A. Emanuel, An airsea interaction theory for tropical cyclones. part ii: Evolutionary study using a nonhydrostatic axisymmetric numerical model, J. Atmos. Sci, 44 (1987), 542-561. Google Scholar |
[19] |
W. Shen, R. E. Tuleya and I. Ginis, A sensitivity study of the thermodynamic environment on GFDL model hurricane intensity: Implications for global warming, J. Climate, 13 (2000), 109-121. Google Scholar |
[20] |
R. K. Smith, G. Kilroy and M. T. Montgomery,
Why do model tropical cyclones intensify more rapidly at low latitudes, Journal of the Atmospheric Sciences, 72 (2015), 1783-1840.
doi: 10.1175/JAS-D-14-0044.1. |
[21] |
R. Wilhelmson and Y. Ogura,
The pressure perturbation and the numerical modeling of a cloud, Journal of the Atmospheric Sciences, 29 (1972), 1295-1307.
doi: 10.1175/1520-0469(1972)029<1295:TPPATN>2.0.CO;2. |
[22] |
H. E. Willoughby,
Forced secondary circulations in hurricanes, J. Geophys. Res, 84 (1979), 3173-3183.
doi: 10.1029/JC084iC06p03173. |
[23] |
H. E. Willoughby,
Gradient Balance in Tropical Cyclones, J. Atmos. Sci., 47 (1990), 265-274.
doi: 10.1175/1520-0469(1990)047<0265:GBITC>2.0.CO;2. |



[1] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
[2] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[3] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[4] |
Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021002 |
[5] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[6] |
Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021003 |
[7] |
Linhao Xu, Marya Claire Zdechlik, Melissa C. Smith, Min B. Rayamajhi, Don L. DeAngelis, Bo Zhang. Simulation of post-hurricane impact on invasive species with biological control management. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4059-4071. doi: 10.3934/dcds.2020038 |
[8] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[9] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
[10] |
Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021004 |
[11] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[12] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[13] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[14] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[15] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[16] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[17] |
Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251 |
[18] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[19] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[20] |
Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020346 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]