September 2017, 7(3): 223-250. doi: 10.3934/naco.2017016

Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures

1. 

University of the Bundeswehr Munich, Faculty of Informatics, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany

2. 

Middle East Technical University, Institute of Applied Mathematics, 06531 Ankara, Turkey

* Corresponding author: Erik Kropat

+ Honorary positions: Faculty of Economics, Business and Law, University of Siegen, Germany; Center for Research on Optimization and Control, University of Aveiro, Portugal; University of North Sumatra, Indonesia

Received  August 2016 Revised  July 2017 Published  July 2017

In modern material sciences and multi-scale physics homogenization approaches provide a global characterization of physical systems that depend on the topology of the underlying microgeometry. Purely formal approaches such as averaging techniques can be applied for an identification of the averaged system. For models in variational form, two-scale convergence for network functions can be used to derive the homogenized model. The sequence of solutions of the variational microcsopic models and the corresponding sequence of tangential gradients converge toward limit functions that are characterized by the solution of the variational macroscopic model. Here, a further extension of this result is proved. The variational macroscopic model can be equivalently represented by a homogenized model on the superior domain and a certain number of reference cell problems. In this way, the results obtained by averaging strategies are supported by notions of convergence for network functions on varying domains.

Citation: Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016
References:
[1]

A. AbdulleY. Bai and G. Vilmart, An offline-online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems, International Journal for Numerical Methods in Engineering, 99 (2014), 469-486. doi: 10.1002/nme.4682.

[2]

T. ArbogastJ. Douglas Jr and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM Journal on Mathematical Analysis, 21 (1990), 823-836. doi: 10.1137/0521046.

[3]

A. Braides, Γ-Convergence for Beginners, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, Oxford, 1988. doi: 10.1093/acprof:oso/9780198507840.001.0001.

[4]

S. Bochner, Beiträge zur theorie der fastperiodischen funktionen, Math. Annalen., 96 (1926), 119-147. doi: 10.1007/BF01209156.

[5]

S. Bochner and J. von Neumann, Almost periodic function in a group Ⅱ, Trans. Amer. Math. Soc., 37 (1935), 21-50. doi: 10.2307/1989694.

[6]

H. Bohr, Zur theorie der fastperiodischen funktionen I, Acta Mathematica, 45 (1925), 29-127. doi: 10.1007/BF02395468.

[7]

D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Springer, New York, 1999. doi: 10.1007/978-1-4612-2158-6.

[8]

G. Dal Maso, An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and Their Applications, Birkhuser, Basel, 1993. doi: 10.1007/978-1-4612-0327-8.

[9]

A. FortinJ. M. Urquiza and R. Bois, A mesh adaptation method for 1D-boundary layer problems, International Journal of Numerical Analysis and Modeling, Series B, 3 (2012), 408-428.

[10]

I. G. Graham, T. Y. Hou, O. Lakkis and R. Scheichl, Numerical Analysis of Multiscale Problems, Lecture Notes in Computational Science and Engineering, 83, Springer, Berlin, Heidelberg, 2012. Interdisciplinary Applied Mathematics, Springer, New York, 2003. doi: 10.1007/978-3-642-22061-6.

[11]

S. Göktepe and C. Miehe, A micro-macro approach to rubber-like materials. Part Ⅲ: The micro-sphere model of anisotropic Mullins-type damage, Journal of the Mechanics and Physics of Solids, 53 (2005), 2259-2283. doi: 10.1016/j.jmps.2005.04.010.

[12]

B. Hassani and, E. Hinton, Homogenization and Structural Topology Optimization: Theory, Practice and Software, Springer, London, 2011. doi: 10.1007/978-1-4471-0891-7.

[13]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-642-84659-5.

[14]

E. Kropat, Über die Homogenisierung von Netzwerk-Differentialgleichungen, Wissenschaftlicher Verlag Berlin, Berlin, 2007.

[15]

E. Kropat, Homogenization of optimal control problems on large curvilinear networks with a periodic microstructure -Results on $S$-homogenization and Γ-convergence, Numerical Algebra, Control and Optimization, 7 (2017), 51-76. doi: 10.3934/naco.2017003.

[16]

E. Kropat and S. Meyer-Nieberg, Homogenization of singularly perturbed diffusion-advectionreaction equations on periodic networks, in Proceedings of the 15th IFAC Workshop on Control Applications of Optimization (CAO 2012), September 13-16,2012, Rimini, Italy, (2012), 83-88.

[17]

E. KropatS. Meyer-Nieberg and G. -W. Weber, Two-scale asymptotic analysis of singularly perturbed elliptic differential equations on large periodic networks, Dynamics of Continuous, Discrete and Impulsive Systems -Series B: Applications, 22 (2015), 293-324.

[18]

E. KropatS. Meyer-Nieberg and G. -W. Weber, Singularly perturbed diffusion-advection-reaction processes on extremely large three-dimensional curvilinear networks with a periodic microstructure -efficient solution strategies based on homogenization theory, Numerical Algebra, Control and Optimization, 9 (2016), 183-219. doi: 10.3934/naco.2016008.

[19]

E. KropatS. Meyer-Nieberg and G. -W. Weber, A topology optimization approach for micro-architectured systems on singularly perturbed periodic manifolds -Two-scale asymptotic analysis and the influence of the network topology, Dynamics of Continuous, Discrete and Impulsive Systems -Series B: Applications & Algorithms, 23 (2016), 155-193.

[20]

M. Lenczner, Homogénéisation d'un circuit électrique, Comptes Rendus de l'Académie des Sciences -Series IIB -Mechanics-Physics-Chemistry-Astronomy, 324 (1997), 537-542.

[21]

M. Lenczner, Multiscale model for atomic force microscope array mechanical behaviour, Applied Physics Letters, 90 (2007), 091908.

[22]

M. Lenczner and D. Mercier, Homogenization of periodic electrical networks including voltage to current amplifiers, Multiscale Modeling and Simulation, 2 (2004), 359-397. doi: 10.1137/S1540345903423919.

[23]

M. Lenczner and G. Senouci-Bereksi, Homogenization of electrical networks including voltage-to-voltage amplifiers, Mathematical Models and Methods in Applied Sciences, 9 (1999), 899-932. doi: 10.1142/S0218202599000415.

[24]

C. Miehe and S. Göktepe, A micro-macro approach to rubber-like materials. Part Ⅱ: The micro-sphere model of finite rubber viscoelasticity, Journal of the Mechanics and Physics of Solids, 53 (2005), 2231-2258. doi: 10.1016/j.jmps.2005.04.006.

[25]

C. MieheS. Göktepe and F. Lulei, A micro-macro approach to rubber-like materials -Part Ⅰ: the non-affine micro-sphere model of rubber elasticity, Journal of the Mechanics and Physics of Solids, 52 (2004), 2617-2660. doi: 10.1016/j.jmps.2004.03.011.

[26]

E. Nuhn and E. Kropat and W. Reinhardt and S. Pckl, Preparation of complex landslide simulation results with clustering approaches for decision support and early warning, in Proceedings of the 45th Annual Hawaii International Conference on System Sciences (HICSS-45), January 4-7,2012, Grand Wailea, Maui, Hawaii, (eds. H. Ralph and Jr. Sprague), IEEE Computer Society, (2012), 1089–1096.

[27]

G. A. Pavliotis and A. Stuart, Multiscale methods, averaging and homogenization, Texts in Applied Mathematics Vol. 53, Springer, New York, 2008.

[28]

C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems, Lecture Notes in Computational Science and Engineering, 90, Springer, Berlin, Heidelberg, 2013. doi: 10.1007/978-3-642-23588-7.

[29]

L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Springer, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-05195-1.

[30]

M. Vogelius, A homogenization result for planar, polygonal networks, RAIRO Modélisation Mathématique et Analyse Numérique, 25 (1991), 483-514. doi: 10.1051/m2an/1991250404831.

show all references

References:
[1]

A. AbdulleY. Bai and G. Vilmart, An offline-online homogenization strategy to solve quasilinear two-scale problems at the cost of one-scale problems, International Journal for Numerical Methods in Engineering, 99 (2014), 469-486. doi: 10.1002/nme.4682.

[2]

T. ArbogastJ. Douglas Jr and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM Journal on Mathematical Analysis, 21 (1990), 823-836. doi: 10.1137/0521046.

[3]

A. Braides, Γ-Convergence for Beginners, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, Oxford, 1988. doi: 10.1093/acprof:oso/9780198507840.001.0001.

[4]

S. Bochner, Beiträge zur theorie der fastperiodischen funktionen, Math. Annalen., 96 (1926), 119-147. doi: 10.1007/BF01209156.

[5]

S. Bochner and J. von Neumann, Almost periodic function in a group Ⅱ, Trans. Amer. Math. Soc., 37 (1935), 21-50. doi: 10.2307/1989694.

[6]

H. Bohr, Zur theorie der fastperiodischen funktionen I, Acta Mathematica, 45 (1925), 29-127. doi: 10.1007/BF02395468.

[7]

D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Springer, New York, 1999. doi: 10.1007/978-1-4612-2158-6.

[8]

G. Dal Maso, An Introduction to Γ-Convergence, Progress in Nonlinear Differential Equations and Their Applications, Birkhuser, Basel, 1993. doi: 10.1007/978-1-4612-0327-8.

[9]

A. FortinJ. M. Urquiza and R. Bois, A mesh adaptation method for 1D-boundary layer problems, International Journal of Numerical Analysis and Modeling, Series B, 3 (2012), 408-428.

[10]

I. G. Graham, T. Y. Hou, O. Lakkis and R. Scheichl, Numerical Analysis of Multiscale Problems, Lecture Notes in Computational Science and Engineering, 83, Springer, Berlin, Heidelberg, 2012. Interdisciplinary Applied Mathematics, Springer, New York, 2003. doi: 10.1007/978-3-642-22061-6.

[11]

S. Göktepe and C. Miehe, A micro-macro approach to rubber-like materials. Part Ⅲ: The micro-sphere model of anisotropic Mullins-type damage, Journal of the Mechanics and Physics of Solids, 53 (2005), 2259-2283. doi: 10.1016/j.jmps.2005.04.010.

[12]

B. Hassani and, E. Hinton, Homogenization and Structural Topology Optimization: Theory, Practice and Software, Springer, London, 2011. doi: 10.1007/978-1-4471-0891-7.

[13]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer, Berlin, Heidelberg, 1994. doi: 10.1007/978-3-642-84659-5.

[14]

E. Kropat, Über die Homogenisierung von Netzwerk-Differentialgleichungen, Wissenschaftlicher Verlag Berlin, Berlin, 2007.

[15]

E. Kropat, Homogenization of optimal control problems on large curvilinear networks with a periodic microstructure -Results on $S$-homogenization and Γ-convergence, Numerical Algebra, Control and Optimization, 7 (2017), 51-76. doi: 10.3934/naco.2017003.

[16]

E. Kropat and S. Meyer-Nieberg, Homogenization of singularly perturbed diffusion-advectionreaction equations on periodic networks, in Proceedings of the 15th IFAC Workshop on Control Applications of Optimization (CAO 2012), September 13-16,2012, Rimini, Italy, (2012), 83-88.

[17]

E. KropatS. Meyer-Nieberg and G. -W. Weber, Two-scale asymptotic analysis of singularly perturbed elliptic differential equations on large periodic networks, Dynamics of Continuous, Discrete and Impulsive Systems -Series B: Applications, 22 (2015), 293-324.

[18]

E. KropatS. Meyer-Nieberg and G. -W. Weber, Singularly perturbed diffusion-advection-reaction processes on extremely large three-dimensional curvilinear networks with a periodic microstructure -efficient solution strategies based on homogenization theory, Numerical Algebra, Control and Optimization, 9 (2016), 183-219. doi: 10.3934/naco.2016008.

[19]

E. KropatS. Meyer-Nieberg and G. -W. Weber, A topology optimization approach for micro-architectured systems on singularly perturbed periodic manifolds -Two-scale asymptotic analysis and the influence of the network topology, Dynamics of Continuous, Discrete and Impulsive Systems -Series B: Applications & Algorithms, 23 (2016), 155-193.

[20]

M. Lenczner, Homogénéisation d'un circuit électrique, Comptes Rendus de l'Académie des Sciences -Series IIB -Mechanics-Physics-Chemistry-Astronomy, 324 (1997), 537-542.

[21]

M. Lenczner, Multiscale model for atomic force microscope array mechanical behaviour, Applied Physics Letters, 90 (2007), 091908.

[22]

M. Lenczner and D. Mercier, Homogenization of periodic electrical networks including voltage to current amplifiers, Multiscale Modeling and Simulation, 2 (2004), 359-397. doi: 10.1137/S1540345903423919.

[23]

M. Lenczner and G. Senouci-Bereksi, Homogenization of electrical networks including voltage-to-voltage amplifiers, Mathematical Models and Methods in Applied Sciences, 9 (1999), 899-932. doi: 10.1142/S0218202599000415.

[24]

C. Miehe and S. Göktepe, A micro-macro approach to rubber-like materials. Part Ⅱ: The micro-sphere model of finite rubber viscoelasticity, Journal of the Mechanics and Physics of Solids, 53 (2005), 2231-2258. doi: 10.1016/j.jmps.2005.04.006.

[25]

C. MieheS. Göktepe and F. Lulei, A micro-macro approach to rubber-like materials -Part Ⅰ: the non-affine micro-sphere model of rubber elasticity, Journal of the Mechanics and Physics of Solids, 52 (2004), 2617-2660. doi: 10.1016/j.jmps.2004.03.011.

[26]

E. Nuhn and E. Kropat and W. Reinhardt and S. Pckl, Preparation of complex landslide simulation results with clustering approaches for decision support and early warning, in Proceedings of the 45th Annual Hawaii International Conference on System Sciences (HICSS-45), January 4-7,2012, Grand Wailea, Maui, Hawaii, (eds. H. Ralph and Jr. Sprague), IEEE Computer Society, (2012), 1089–1096.

[27]

G. A. Pavliotis and A. Stuart, Multiscale methods, averaging and homogenization, Texts in Applied Mathematics Vol. 53, Springer, New York, 2008.

[28]

C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems, Lecture Notes in Computational Science and Engineering, 90, Springer, Berlin, Heidelberg, 2013. doi: 10.1007/978-3-642-23588-7.

[29]

L. Tartar, The General Theory of Homogenization: A Personalized Introduction, Springer, Berlin, Heidelberg, 2010. doi: 10.1007/978-3-642-05195-1.

[30]

M. Vogelius, A homogenization result for planar, polygonal networks, RAIRO Modélisation Mathématique et Analyse Numérique, 25 (1991), 483-514. doi: 10.1051/m2an/1991250404831.

Figure 1.  The homogenization process: The sequence of solutions of the microscopic model as well as the corresponding sequence of tangential gradients are weakly two-scale convergent. The limits of these sequences can be represented by the solution of the homogenized model
Figure 2.  Two-scale transform: The function $x:\Omega \times {\mathscr{Y}} \rightarrow {\cal{N}}^\Omega_\varepsilon$ is surjective, but not injective
Figure 3.  Two-scale transform: Mapping from ${\cal{N}}^\Omega_\varepsilon$ to the product $\Omega \times {\mathscr{Y}}$
[1]

Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks & Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353

[2]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[3]

Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223

[4]

Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Two-Scale numerical simulation of sand transport problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 151-168. doi: 10.3934/dcdss.2015.8.151

[5]

Alexandre Mouton. Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic & Related Models, 2009, 2 (2) : 251-274. doi: 10.3934/krm.2009.2.251

[6]

Fang Liu, Aihui Zhou. Localizations and parallelizations for two-scale finite element discretizations. Communications on Pure & Applied Analysis, 2007, 6 (3) : 757-773. doi: 10.3934/cpaa.2007.6.757

[7]

Alexandre Mouton. Expansion of a singularly perturbed equation with a two-scale converging convection term. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1447-1473. doi: 10.3934/dcdss.2016058

[8]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Singularly perturbed diffusion-advection-reaction processes on extremely large three-dimensional curvilinear networks with a periodic microstructure -- efficient solution strategies based on homogenization theory. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 183-219. doi: 10.3934/naco.2016008

[9]

Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827

[10]

Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks & Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143

[11]

Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a two-scale transport equation with energy flux conserved at the interface. Kinetic & Related Models, 2008, 1 (1) : 65-84. doi: 10.3934/krm.2008.1.65

[12]

Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic & Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707

[13]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

[14]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841

[15]

Erik Kropat. Homogenization of optimal control problems on curvilinear networks with a periodic microstructure --Results on $\boldsymbol{S}$-homogenization and $\boldsymbol{Γ}$-convergence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 51-76. doi: 10.3934/naco.2017003

[16]

Bo Duan, Zhengce Zhang. A two-species weak competition system of reaction-diffusion-advection with double free boundaries. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-29. doi: 10.3934/dcdsb.2018208

[17]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[18]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Computational networks and systems-homogenization of self-adjoint differential operators in variational form on periodic networks and micro-architectured systems. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 139-169. doi: 10.3934/naco.2017010

[19]

Joachim von Below, José A. Lubary. Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Networks & Heterogeneous Media, 2009, 4 (3) : 453-468. doi: 10.3934/nhm.2009.4.453

[20]

Patrick Henning. Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks & Heterogeneous Media, 2012, 7 (3) : 503-524. doi: 10.3934/nhm.2012.7.503

 Impact Factor: 

Metrics

  • PDF downloads (5)
  • HTML views (28)
  • Cited by (0)

[Back to Top]