• Previous Article
    A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures
  • KRM Home
  • This Issue
  • Next Article
    Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum
2018, 11(1): 71-95. doi: 10.3934/krm.2018004

Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics

1. 

Dip. di Scienze Matematiche, Fisiche e Informatiche, Universitá di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy

2. 

Dip. di Matematica and Alma Mater Research Center, on Applied Mathematics AM$^2$, Via Saragozza, 8,40123 Bologna, Italy

* Corresponding author: T. Ruggeri

Received  November 2016 Published  August 2017

The aim of this paper is to compare different kinetic approaches to a polyatomic rarefied gas: the kinetic approach via a continuous energy parameter $I$ and the mixture-like one, based on discrete internal energy. We prove that if we consider only $6$ moments for a non-polytropic gas the two approaches give the same symmetric hyperbolic differential system previously obtained by the phenomenological Extended Thermodynamics. Both meaning and role of dynamical pressure become more clear in the present analysis.

Citation: Marzia Bisi, Tommaso Ruggeri, Giampiero Spiga. Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics. Kinetic & Related Models, 2018, 11 (1) : 71-95. doi: 10.3934/krm.2018004
References:
[1]

T. Arima, A. Mentrelli, T. Ruggeri, Extended thermodynamics of rarefied polyatomic gases and characteristic velocities, Rend. Lincei Mat. Appl., 25 (2014), 275-291. doi: 10.4171/RLM/678.

[2]

T. Arima, A. Mentrelli, T. Ruggeri, Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments, Ann. Physics, 345 (2014), 111-140. doi: 10.1016/j.aop.2014.03.011.

[3]

T. Arima, T. Ruggeri and M. Sugiyama, Duality principle from rarefied to dense gas and extended thermodynamics with $6$ fields, Phys. Rev. Fluids, 2 (2017), 013401, 22 pp.

[4]

T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, Monatomic gas as a singular limit of polyatomic gas in molecular extended thermodynamics with many moments, Ann. Physics, 372 (2016), 83-109. doi: 10.1016/j.aop.2016.04.015.

[5]

T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, Nonlinear extended thermodynamics of real gases with 6 fields, Int. J. Non-Linear Mech., 72 (2015), 6-15.

[6]

T. Arima, T. Ruggeri, S. Taniguchi, M. Sugiyama, Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics, Phys. Lett. A, 377 (2013), 2136-2140. doi: 10.1016/j.physleta.2013.06.035.

[7]

T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics, Contin. Mech. Thermodyn., 25 (2013), 727-737. doi: 10.1007/s00161-012-0271-8.

[8]

T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of dense gases, Contin. Mech. Thermodyn., 24 (2012), 271-292. doi: 10.1007/s00161-011-0213-x.

[9]

T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of real gases with dynamic pressure: An extension of Meixner's theory, Phys. Lett. A, 376 (2012), 2799-2803. doi: 10.1016/j.physleta.2012.08.030.

[10]

T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, Recent results on nonlinear extended thermodynamics of real gases with six fields. Part I: general theory, Ric. Mat., 65 (2016), 263-277. doi: 10.1007/s11587-016-0283-y.

[11]

M. Bisi, L. Desvillettes, G. Spiga, Exponential convergence to equilibrium via Lyapunov functionals for reaction-diffusion equations arising from non reversible chemical kinetics, M2AN Math. Model. Numer. Anal., 43 (2009), 151-172. doi: 10.1051/m2an:2008045.

[12]

M. Bisi, G. Martaló, G. Spiga, Multi-temperature fluid-dynamic model equations from kinetic theory in a reactive gas: the steady shock problem, Comput. Math. Appl., 66 (2013), 1403-1417. doi: 10.1016/j.camwa.2013.08.015.

[13]

M. Bisi, A. Rossani, G. Spiga, A conservative multi-group approach to the Boltzmann equations for reactive gas mixtures, Phys. A, 438 (2015), 603-611. doi: 10.1016/j.physa.2015.06.021.

[14]

C. Borgnakke, P. S. Larsen, Statistical collision model for Monte Carlo simulation of polyatomic gas mixture, J. Comput. Phys., 18 (1975), 405-420. doi: 10.1016/0021-9991(75)90094-7.

[15]

J. F. Bourgat, L. Desvillettes, P. Le Tallec, B. Perthame, Microreversible collisions for polyatomic gases, Eur. J. Mech. B/Fluids, 13 (1994), 237-254.

[16]

C. Cercignani, Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations, , University Press, Cambridge, 2000.

[17]

S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1970.

[18]

F. Conforto, M. Groppi, R. Monaco, G. Spiga, Kinetic approach to deflagration processes in a recombination reaction, Kinet. Relat. Models, 4 (2011), 259-276. doi: 10.3934/krm.2011.4.259.

[19]

W. Dreyer, Maximization of the entropy in non-equilibrium, J. Phys. A: Math. Gen., 20 (1987), 6505-6517. doi: 10.1088/0305-4470/20/18/047.

[20]

M. Groppi, K. Aoki, G. Spiga, V. Tritsch, Shock structure analysis in chemically reacting gas mixtures by a relaxation-time kinetic model, Phys. Fluids, 20 (2008), 117103, 11pp. doi: 10.1063/1.3013637.

[21]

M. Groppi, P. Lichtenberger, F. Schuerrer, G. Spiga, Conservative approximation schemes of kinetic equations for chemical reactions, Eur. J. Mech. B/Fluids, 27 (2008), 202-217. doi: 10.1016/j.euromechflu.2007.05.001.

[22]

M. Groppi, S. Rjasanow and G. Spiga, A kinetic relaxation approach to fast reactive mixtures: Shock wave structure J. Stat. Mech. -Theory Exp. , (2009), P10010, 15 pp. doi: 10.1088/1742-5468/2009/10/P10010.

[23]

M. Groppi, G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (1999), 197-219.

[24]

M. Groppi, G. Spiga and F. Zus, Euler closure of the Boltzmann equations for resonant bimolecular reactions, Phys. Fluids, 18 (2006), 057105, 8 pp. doi: 10.1063/1.2204098.

[25]

S. Kosuge, K. Aoki and T. Goto, Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation, AIP Conference Proceedings of "30th International Symposium on Rarefied Gas Dynamics" (eds. A. Ketsdever and H. Struchtrup), 1786 (2016), 180004, 8 pp. doi: 10.1063/1.4967673.

[26]

J. R. Mika and J. Banasiak, Singularly Perturbed Evolution Equations with Applications to Kinetic Theory, World Scientific, Singapore, 1995. doi: 10.1142/9789812831248.

[27]

I. Müller and T. Ruggeri, Extended Thermodynamics, Springer Tracts in Natural Philosophy, 37 ($1^{\rm st}$ edition), Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4684-0447-0.

[28]

I. Müller and T. Ruggeri, Rational Extended Thermodynamics, $2^{\rm nd}$ edition, Springer, New York, 1998. doi: 10.1007/978-1-4612-2210-1.

[29]

M. Pavić, T. Ruggeri, S. Simić, Maximum entropy principle for polyatomic gases, Phys. A, 392 (2013), 1302-1317. doi: 10.1016/j.physa.2012.12.006.

[30]

A. Rossani, G. Spiga, A note on the kinetic theory of chemically reacting gases, Phys. A, 272 (1999), 563-573. doi: 10.1016/S0378-4371(99)00336-2.

[31]

T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws, Contin. Mech. Thermodyn., 1 (1989), 3-20. doi: 10.1007/BF01125883.

[32]

T. Ruggeri, Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure, Bull. Inst. Math. Acad. Sin. (N.S.), 11 (2016), 1-22.

[33]

T. Ruggeri and M. Sugiyama, Rational Extended Thermodynamics beyond the Monatomic Gas, Springer, Cham Heidelberg New York Dordrecht London, 2015. doi: 10.1007/978-3-319-13341-6.

[34]

Y. Shizuta, S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275. doi: 10.14492/hokmj/1381757663.

[35]

S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama, Effect of dynamic pressure on the shock wave structure in a rarefied polyatomic gas, Phys. Fluids, 26 (2014), 016103, 15 pp. doi: 10.1063/1.4861368.

[36]

S. Taniguchi, T. Arima, T. Ruggeri, M. Sugiyama, Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure, Int. J. Non-Linear Mech., 79 (2016), 66-75.

[37]

S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama, Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: Beyond the Bethe-Teller theory, Phys. Rev. E, 89 (2014), 013025, 11 pp. doi: 10.1103/PhysRevE.89.013025.

show all references

References:
[1]

T. Arima, A. Mentrelli, T. Ruggeri, Extended thermodynamics of rarefied polyatomic gases and characteristic velocities, Rend. Lincei Mat. Appl., 25 (2014), 275-291. doi: 10.4171/RLM/678.

[2]

T. Arima, A. Mentrelli, T. Ruggeri, Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments, Ann. Physics, 345 (2014), 111-140. doi: 10.1016/j.aop.2014.03.011.

[3]

T. Arima, T. Ruggeri and M. Sugiyama, Duality principle from rarefied to dense gas and extended thermodynamics with $6$ fields, Phys. Rev. Fluids, 2 (2017), 013401, 22 pp.

[4]

T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, Monatomic gas as a singular limit of polyatomic gas in molecular extended thermodynamics with many moments, Ann. Physics, 372 (2016), 83-109. doi: 10.1016/j.aop.2016.04.015.

[5]

T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, Nonlinear extended thermodynamics of real gases with 6 fields, Int. J. Non-Linear Mech., 72 (2015), 6-15.

[6]

T. Arima, T. Ruggeri, S. Taniguchi, M. Sugiyama, Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics, Phys. Lett. A, 377 (2013), 2136-2140. doi: 10.1016/j.physleta.2013.06.035.

[7]

T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics, Contin. Mech. Thermodyn., 25 (2013), 727-737. doi: 10.1007/s00161-012-0271-8.

[8]

T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of dense gases, Contin. Mech. Thermodyn., 24 (2012), 271-292. doi: 10.1007/s00161-011-0213-x.

[9]

T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, Extended thermodynamics of real gases with dynamic pressure: An extension of Meixner's theory, Phys. Lett. A, 376 (2012), 2799-2803. doi: 10.1016/j.physleta.2012.08.030.

[10]

T. Arima, T. Ruggeri, M. Sugiyama, S. Taniguchi, Recent results on nonlinear extended thermodynamics of real gases with six fields. Part I: general theory, Ric. Mat., 65 (2016), 263-277. doi: 10.1007/s11587-016-0283-y.

[11]

M. Bisi, L. Desvillettes, G. Spiga, Exponential convergence to equilibrium via Lyapunov functionals for reaction-diffusion equations arising from non reversible chemical kinetics, M2AN Math. Model. Numer. Anal., 43 (2009), 151-172. doi: 10.1051/m2an:2008045.

[12]

M. Bisi, G. Martaló, G. Spiga, Multi-temperature fluid-dynamic model equations from kinetic theory in a reactive gas: the steady shock problem, Comput. Math. Appl., 66 (2013), 1403-1417. doi: 10.1016/j.camwa.2013.08.015.

[13]

M. Bisi, A. Rossani, G. Spiga, A conservative multi-group approach to the Boltzmann equations for reactive gas mixtures, Phys. A, 438 (2015), 603-611. doi: 10.1016/j.physa.2015.06.021.

[14]

C. Borgnakke, P. S. Larsen, Statistical collision model for Monte Carlo simulation of polyatomic gas mixture, J. Comput. Phys., 18 (1975), 405-420. doi: 10.1016/0021-9991(75)90094-7.

[15]

J. F. Bourgat, L. Desvillettes, P. Le Tallec, B. Perthame, Microreversible collisions for polyatomic gases, Eur. J. Mech. B/Fluids, 13 (1994), 237-254.

[16]

C. Cercignani, Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations, , University Press, Cambridge, 2000.

[17]

S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1970.

[18]

F. Conforto, M. Groppi, R. Monaco, G. Spiga, Kinetic approach to deflagration processes in a recombination reaction, Kinet. Relat. Models, 4 (2011), 259-276. doi: 10.3934/krm.2011.4.259.

[19]

W. Dreyer, Maximization of the entropy in non-equilibrium, J. Phys. A: Math. Gen., 20 (1987), 6505-6517. doi: 10.1088/0305-4470/20/18/047.

[20]

M. Groppi, K. Aoki, G. Spiga, V. Tritsch, Shock structure analysis in chemically reacting gas mixtures by a relaxation-time kinetic model, Phys. Fluids, 20 (2008), 117103, 11pp. doi: 10.1063/1.3013637.

[21]

M. Groppi, P. Lichtenberger, F. Schuerrer, G. Spiga, Conservative approximation schemes of kinetic equations for chemical reactions, Eur. J. Mech. B/Fluids, 27 (2008), 202-217. doi: 10.1016/j.euromechflu.2007.05.001.

[22]

M. Groppi, S. Rjasanow and G. Spiga, A kinetic relaxation approach to fast reactive mixtures: Shock wave structure J. Stat. Mech. -Theory Exp. , (2009), P10010, 15 pp. doi: 10.1088/1742-5468/2009/10/P10010.

[23]

M. Groppi, G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (1999), 197-219.

[24]

M. Groppi, G. Spiga and F. Zus, Euler closure of the Boltzmann equations for resonant bimolecular reactions, Phys. Fluids, 18 (2006), 057105, 8 pp. doi: 10.1063/1.2204098.

[25]

S. Kosuge, K. Aoki and T. Goto, Shock wave structure in polyatomic gases: numerical analysis using a model Boltzmann equation, AIP Conference Proceedings of "30th International Symposium on Rarefied Gas Dynamics" (eds. A. Ketsdever and H. Struchtrup), 1786 (2016), 180004, 8 pp. doi: 10.1063/1.4967673.

[26]

J. R. Mika and J. Banasiak, Singularly Perturbed Evolution Equations with Applications to Kinetic Theory, World Scientific, Singapore, 1995. doi: 10.1142/9789812831248.

[27]

I. Müller and T. Ruggeri, Extended Thermodynamics, Springer Tracts in Natural Philosophy, 37 ($1^{\rm st}$ edition), Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4684-0447-0.

[28]

I. Müller and T. Ruggeri, Rational Extended Thermodynamics, $2^{\rm nd}$ edition, Springer, New York, 1998. doi: 10.1007/978-1-4612-2210-1.

[29]

M. Pavić, T. Ruggeri, S. Simić, Maximum entropy principle for polyatomic gases, Phys. A, 392 (2013), 1302-1317. doi: 10.1016/j.physa.2012.12.006.

[30]

A. Rossani, G. Spiga, A note on the kinetic theory of chemically reacting gases, Phys. A, 272 (1999), 563-573. doi: 10.1016/S0378-4371(99)00336-2.

[31]

T. Ruggeri, Galilean invariance and entropy principle for systems of balance laws, Contin. Mech. Thermodyn., 1 (1989), 3-20. doi: 10.1007/BF01125883.

[32]

T. Ruggeri, Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure, Bull. Inst. Math. Acad. Sin. (N.S.), 11 (2016), 1-22.

[33]

T. Ruggeri and M. Sugiyama, Rational Extended Thermodynamics beyond the Monatomic Gas, Springer, Cham Heidelberg New York Dordrecht London, 2015. doi: 10.1007/978-3-319-13341-6.

[34]

Y. Shizuta, S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249-275. doi: 10.14492/hokmj/1381757663.

[35]

S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama, Effect of dynamic pressure on the shock wave structure in a rarefied polyatomic gas, Phys. Fluids, 26 (2014), 016103, 15 pp. doi: 10.1063/1.4861368.

[36]

S. Taniguchi, T. Arima, T. Ruggeri, M. Sugiyama, Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure, Int. J. Non-Linear Mech., 79 (2016), 66-75.

[37]

S. Taniguchi, T. Arima, T. Ruggeri and M. Sugiyama, Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: Beyond the Bethe-Teller theory, Phys. Rev. E, 89 (2014), 013025, 11 pp. doi: 10.1103/PhysRevE.89.013025.

[1]

Manuel Torrilhon. H-Theorem for nonlinear regularized 13-moment equations in kinetic gas theory. Kinetic & Related Models, 2012, 5 (1) : 185-201. doi: 10.3934/krm.2012.5.185

[2]

Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037

[3]

Lihui Guo, Tong Li, Gan Yin. The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Communications on Pure & Applied Analysis, 2017, 16 (1) : 295-310. doi: 10.3934/cpaa.2017014

[4]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[5]

Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic & Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003

[6]

Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2373-2400. doi: 10.3934/cpaa.2016041

[7]

Gilberto M. Kremer, Wilson Marques Jr.. Fourteen moment theory for granular gases. Kinetic & Related Models, 2011, 4 (1) : 317-331. doi: 10.3934/krm.2011.4.317

[8]

Florian Schneider, Jochen Kall, Graham Alldredge. A realizability-preserving high-order kinetic scheme using WENO reconstruction for entropy-based moment closures of linear kinetic equations in slab geometry. Kinetic & Related Models, 2016, 9 (1) : 193-215. doi: 10.3934/krm.2016.9.193

[9]

Vaughn Climenhaga. Multifractal formalism derived from thermodynamics for general dynamical systems. Electronic Research Announcements, 2010, 17: 1-11. doi: 10.3934/era.2010.17.1

[10]

Geng Lai, Wancheng Sheng, Yuxi Zheng. Simple waves and pressure delta waves for a Chaplygin gas in two-dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 489-523. doi: 10.3934/dcds.2011.31.489

[11]

Darryl D. Holm, Vakhtang Putkaradze, Cesare Tronci. Collisionless kinetic theory of rolling molecules. Kinetic & Related Models, 2013, 6 (2) : 429-458. doi: 10.3934/krm.2013.6.429

[12]

Emmanuel Frénod, Mathieu Lutz. On the Geometrical Gyro-Kinetic theory. Kinetic & Related Models, 2014, 7 (4) : 621-659. doi: 10.3934/krm.2014.7.621

[13]

Luisa Arlotti, Bertrand Lods, Mustapha Mokhtar-Kharroubi. Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 729-771. doi: 10.3934/cpaa.2014.13.729

[14]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic & Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[15]

Henri Schurz. Moment attractivity, stability and contractivity exponents of stochastic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 487-515. doi: 10.3934/dcds.2001.7.487

[16]

Steinar Evje, Kenneth Hvistendahl Karlsen. Global weak solutions for a viscous liquid-gas model with singular pressure law. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1867-1894. doi: 10.3934/cpaa.2009.8.1867

[17]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[18]

Paolo Barbante, Aldo Frezzotti, Livio Gibelli. A kinetic theory description of liquid menisci at the microscale. Kinetic & Related Models, 2015, 8 (2) : 235-254. doi: 10.3934/krm.2015.8.235

[19]

Darryl D. Holm, Cesare Tronci. Geodesic Vlasov equations and their integrable moment closures. Journal of Geometric Mechanics, 2009, 1 (2) : 181-208. doi: 10.3934/jgm.2009.1.181

[20]

Miroslava Růžičková, Irada Dzhalladova, Jitka Laitochová, Josef Diblík. Solution to a stochastic pursuit model using moment equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 473-485. doi: 10.3934/dcdsb.2018032

2016 Impact Factor: 1.261

Metrics

  • PDF downloads (1)
  • HTML views (3)
  • Cited by (0)

Other articles
by authors

[Back to Top]