• Previous Article
    Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces
  • DCDS Home
  • This Issue
  • Next Article
    Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter
December 2017, 37(12): 6405-6435. doi: 10.3934/dcds.2017278

Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case

1. 

CNRS & Déepartment de Mathématiques et Applications, École Normale Supérieure (Paris), 45 rue d'Ulm, 75005 Paris, France

2. 

70, rue du Javelot, 75013 Paris, France

Received  March 2017 Published  August 2017

A multi-dimensional junction is obtained by identifying the boundaries of a finite number of copies of an Euclidian half-space. The main contribution of this article is the construction of a multidimensional vertex test function G(x, y). First, such a function has to be sufficiently regular to be used as a test function in the viscosity solution theory for quasi-convex Hamilton-Jacobi equations posed on a multi-dimensional junction. Second, its gradients have to satisfy appropriate compatibility conditions in order to replace the usual quadratic penalization function |x-y|2 in the proof of strong uniqueness (comparison principle) by the celebrated doubling variable technique. This result extends a construction the authors previously achieved in the network setting. In the multi-dimensional setting, the construction is less explicit and more delicate.

Citation: Cyril Imbert, Régis Monneau. Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6405-6435. doi: 10.3934/dcds.2017278
References:
[1]

Y. AchdouF. CamilliA. Cutrì and N. Tchou, Hamilton-Jacobi equations constrained on networks, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 413-445. doi: 10.1007/s00030-012-0158-1.

[2]

Y. AchdouS. Oudet and N. Tchou, Hamilton-Jacobi equations for optimal control on junctions and networks, ESAIM Control Optim. Calc. Var., 21 (2015), 876-899. doi: 10.1051/cocv/2014054.

[3]

Y. Achdou, S. Oudet and N. Tchou, Effective transmission conditions for Hamilton-Jacobi equations defined on two domains separated by an oscillatory interface, Journal de Mathématiques Pures et Appliquées, 106 (2016), 1091-1121, URL https://hal.archives-ouvertes.fr/hal-01162438. doi: 10.1016/j.matpur.2016.04.002.

[4]

G. BarlesA. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in $\mathbb{R}^N $, ESAIM Control Optim. Calc. Var., 19 (2013), 710-739. doi: 10.1051/cocv/2012030.

[5]

G. BarlesA. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in $\mathbb{R}^N $, SIAM J. Control Optim., 52 (2014), 1712-1744. doi: 10.1137/130922288.

[6]

G. Barles, A. Briani, E. Chasseigne and C. Imbert, Flux-limited and classical viscosity solutions for regional control problems, 2016, URL https://hal.archives-ouvertes.fr/hal-01392414, Preprint HAL 01392414.

[7]

G. Barles and E. Chasseigne, (Almost) everything you always wanted to know about deterministic control problems in stratified domains, Netw. Heterog. Media, 10 (2015), 809-836. doi: 10.3934/nhm.2015.10.809.

[8]

A. Bressan and Y. Hong, Optimal control problems on stratified domains, Netw. Heterog. Media, 2 (2007), 313-331. doi: 10.3934/nhm.2007.2.313.

[9]

F. CamilliD. Schieborn and C. Marchi, Eikonal equations on ramified spaces, Interfaces Free Bound., 15 (2013), 121-140. doi: 10.4171/IFB/297.

[10]

M. I. Freidlin and A. D. Wentzell, Diffusion processes on an open book and the averaging principle, Stochastic Process. Appl., 113 (2004), 101-126. doi: 10.1016/j.spa.2004.03.009.

[11]

Y. Giga and N. Hamamuki, Hamilton-Jacobi equations with discontinuous source terms, Comm. Partial Differential Equations, 38 (2013), 199-243. doi: 10.1080/03605302.2012.739671.

[12]

C. Hermosilla and H. Zidani, Infinite horizon problems on stratifiable state-constraints sets, J. Differential Equations, 258 (2015), 1430-1460. doi: 10.1016/j.jde.2014.11.001.

[13]

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 357-448. doi: 10.24033/asens.2323.

[14]

C. Imbert and V. D. Nguyen, Effective junction conditions for degenerate parabolic equations, 2016, URL https://hal.archives-ouvertes.fr/hal-01252891, Preprint HAL 01252891 (Version 2), 26 pages.

[15]

H. Ishii, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987), 369-384. doi: 10.1215/S0012-7094-87-05521-9.

[16]

S. Oudet, Hamilton-Jacobi equations for optimal control on multidimensional junctions, 2014, Preprint, arXiv: 1412.2679v2.

[17]

Z. RaoA. Siconolfi and H. Zidani, Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations, J. Differential Equations, 257 (2014), 3978-4014. doi: 10.1016/j.jde.2014.07.015.

[18]

Z. Rao and H. Zidani, Hamilton-Jacobi-Bellman equations on multi-domains, Control and Optimization with PDE Constraints, International Series of Numerical Mathematics, 164 (2010), 93-116. doi: 10.1007/978-3-0348-0631-2_6.

show all references

References:
[1]

Y. AchdouF. CamilliA. Cutrì and N. Tchou, Hamilton-Jacobi equations constrained on networks, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 413-445. doi: 10.1007/s00030-012-0158-1.

[2]

Y. AchdouS. Oudet and N. Tchou, Hamilton-Jacobi equations for optimal control on junctions and networks, ESAIM Control Optim. Calc. Var., 21 (2015), 876-899. doi: 10.1051/cocv/2014054.

[3]

Y. Achdou, S. Oudet and N. Tchou, Effective transmission conditions for Hamilton-Jacobi equations defined on two domains separated by an oscillatory interface, Journal de Mathématiques Pures et Appliquées, 106 (2016), 1091-1121, URL https://hal.archives-ouvertes.fr/hal-01162438. doi: 10.1016/j.matpur.2016.04.002.

[4]

G. BarlesA. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in $\mathbb{R}^N $, ESAIM Control Optim. Calc. Var., 19 (2013), 710-739. doi: 10.1051/cocv/2012030.

[5]

G. BarlesA. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in $\mathbb{R}^N $, SIAM J. Control Optim., 52 (2014), 1712-1744. doi: 10.1137/130922288.

[6]

G. Barles, A. Briani, E. Chasseigne and C. Imbert, Flux-limited and classical viscosity solutions for regional control problems, 2016, URL https://hal.archives-ouvertes.fr/hal-01392414, Preprint HAL 01392414.

[7]

G. Barles and E. Chasseigne, (Almost) everything you always wanted to know about deterministic control problems in stratified domains, Netw. Heterog. Media, 10 (2015), 809-836. doi: 10.3934/nhm.2015.10.809.

[8]

A. Bressan and Y. Hong, Optimal control problems on stratified domains, Netw. Heterog. Media, 2 (2007), 313-331. doi: 10.3934/nhm.2007.2.313.

[9]

F. CamilliD. Schieborn and C. Marchi, Eikonal equations on ramified spaces, Interfaces Free Bound., 15 (2013), 121-140. doi: 10.4171/IFB/297.

[10]

M. I. Freidlin and A. D. Wentzell, Diffusion processes on an open book and the averaging principle, Stochastic Process. Appl., 113 (2004), 101-126. doi: 10.1016/j.spa.2004.03.009.

[11]

Y. Giga and N. Hamamuki, Hamilton-Jacobi equations with discontinuous source terms, Comm. Partial Differential Equations, 38 (2013), 199-243. doi: 10.1080/03605302.2012.739671.

[12]

C. Hermosilla and H. Zidani, Infinite horizon problems on stratifiable state-constraints sets, J. Differential Equations, 258 (2015), 1430-1460. doi: 10.1016/j.jde.2014.11.001.

[13]

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Ann. Sci. Éc. Norm. Supér. (4), 50 (2017), 357-448. doi: 10.24033/asens.2323.

[14]

C. Imbert and V. D. Nguyen, Effective junction conditions for degenerate parabolic equations, 2016, URL https://hal.archives-ouvertes.fr/hal-01252891, Preprint HAL 01252891 (Version 2), 26 pages.

[15]

H. Ishii, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 55 (1987), 369-384. doi: 10.1215/S0012-7094-87-05521-9.

[16]

S. Oudet, Hamilton-Jacobi equations for optimal control on multidimensional junctions, 2014, Preprint, arXiv: 1412.2679v2.

[17]

Z. RaoA. Siconolfi and H. Zidani, Transmission conditions on interfaces for Hamilton-Jacobi-Bellman equations, J. Differential Equations, 257 (2014), 3978-4014. doi: 10.1016/j.jde.2014.07.015.

[18]

Z. Rao and H. Zidani, Hamilton-Jacobi-Bellman equations on multi-domains, Control and Optimization with PDE Constraints, International Series of Numerical Mathematics, 164 (2010), 93-116. doi: 10.1007/978-3-0348-0631-2_6.

Figure 1.  A Hamilton-Jacobi equation posed on a multi-dimensional junction. Here there are 3 branches (or sheets — $N=3$ ) and the tangential dimension is $1$ ( $d=1$ ). We did not illustrate the junction condition on the junction hyperplane $\Gamma$ (which is a line in this example)
Figure 2.  Monotone parts $H_i^\pm$ of a Hamiltonian $H_i$ ($H_i^-$ on the left, $H_i^+$ on the right). The Hamiltonian is in black, monotone parts in red. The tangent variable $p'$ is not shown. In this example, the minimum $A_i$ of $H_i$ is lower than $A_0$. The "inverse" functions $\pi_i^\pm$ of $H_i$ are also shown
[1]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[2]

Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 861-875. doi: 10.3934/dcds.2016.36.861

[3]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[4]

Franz Achleitner, Anton Arnold, Eric A. Carlen. On multi-dimensional hypocoercive BGK models. Kinetic & Related Models, 2018, 11 (4) : 953-1009. doi: 10.3934/krm.2018038

[5]

Anatoli F. Ivanov. On global dynamics in a multi-dimensional discrete map. Conference Publications, 2015, 2015 (special) : 652-659. doi: 10.3934/proc.2015.0652

[6]

Gerald Sommer, Di Zang. Parity symmetry in multi-dimensional signals. Communications on Pure & Applied Analysis, 2007, 6 (3) : 829-852. doi: 10.3934/cpaa.2007.6.829

[7]

Kang-Ling Liao, Chih-Wen Shih, Chi-Jer Yu. The snapback repellers for chaos in multi-dimensional maps. Journal of Computational Dynamics, 2018, 5 (1&2) : 81-92. doi: 10.3934/jcd.2018004

[8]

Xiaoling Sun, Xiaojin Zheng, Juan Sun. A Lagrangian dual and surrogate method for multi-dimensional quadratic knapsack problems. Journal of Industrial & Management Optimization, 2009, 5 (1) : 47-60. doi: 10.3934/jimo.2009.5.47

[9]

Wen-Guei Hu, Song-Sun Lin. On spatial entropy of multi-dimensional symbolic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3705-3717. doi: 10.3934/dcds.2016.36.3705

[10]

Péter Bálint, Imre Péter Tóth. Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 37-59. doi: 10.3934/dcds.2006.15.37

[11]

Wen-Qing Xu. Boundary conditions for multi-dimensional hyperbolic relaxation problems. Conference Publications, 2003, 2003 (Special) : 916-925. doi: 10.3934/proc.2003.2003.916

[12]

Eugenii Shustin. Dynamics of oscillations in a multi-dimensional delay differential system. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 557-576. doi: 10.3934/dcds.2004.11.557

[13]

Jung-Chao Ban, Song-Sun Lin. Patterns generation and transition matrices in multi-dimensional lattice models. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 637-658. doi: 10.3934/dcds.2005.13.637

[14]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[15]

Hiroshi Takahashi, Yozo Tamura. Recurrence of multi-dimensional diffusion processes in Brownian environments. Conference Publications, 2015, 2015 (special) : 1034-1040. doi: 10.3934/proc.2015.1034

[16]

Samuel T. Blake, Andrew Z. Tirkel. A multi-dimensional block-circulant perfect array construction. Advances in Mathematics of Communications, 2017, 11 (2) : 367-371. doi: 10.3934/amc.2017030

[17]

Arno Berger. Multi-dimensional dynamical systems and Benford's Law. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 219-237. doi: 10.3934/dcds.2005.13.219

[18]

Yoshihiro Ueda, Tohru Nakamura, Shuichi Kawashima. Stability of planar stationary waves for damped wave equations with nonlinear convection in multi-dimensional half space. Kinetic & Related Models, 2008, 1 (1) : 49-64. doi: 10.3934/krm.2008.1.49

[19]

Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345

[20]

Ming Mei, Yong Wang. Stability of stationary waves for full Euler-Poisson system in multi-dimensional space. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1775-1807. doi: 10.3934/cpaa.2012.11.1775

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (5)
  • HTML views (25)
  • Cited by (1)

Other articles
by authors

[Back to Top]