2017, 11(3): 503-531. doi: 10.3934/amc.2017041

Relative generalized Hamming weights of q-ary Reed-Muller codes

Department of Mathematical Sciences, Aalborg University, Fredrik Bajersvej 7G, DK-9220, Aalborg Øst, Denmark

Received  September 2015 Published  August 2017

Fund Project: The authors are supported by the Danish National Research Foundation and the National Natural Science Foundation of China (Grant No. 11061130539) and The Danish Council for Independent Research (Grant No. DFF–4002-00367)

Coset constructions of q-ary Reed-Muller codes can be used to store secrets on a distributed storage system in such a way that only parties with access to a large part of the system can obtain information while still allowing for local error-correction. In this paper we determine the relative generalized Hamming weights of these codes which can be translated into a detailed description of the information leakage [2,21,18,9]

Citation: Olav Geil, Stefano Martin. Relative generalized Hamming weights of q-ary Reed-Muller codes. Advances in Mathematics of Communications, 2017, 11 (3) : 503-531. doi: 10.3934/amc.2017041
References:
[1]

H. E. Andersen and O. Geil, Evaluation codes from order domain theory, Finite Fields Appl., 14 (2008), 92-123. doi: 10.1016/j.ffa.2006.12.004.

[2]

T. Bains, Generalized Hamming Weights and Their Applications to Secret Sharing Schemes Master's thesis, Univ. Amsterdam, 2008.

[3]

S. L. Bezrukov and U. Leck, Macaulay posets Electr. J. Combin. 1000 (2005), DS12.

[4]

H. Chen, R. Cramer, S. Goldwasser, R. De Haan and V. Vaikuntanathan, Secure computation from random error correcting codes, in Adv. Crypt. -EUROCRYPT 2007, Springer, 2007, 291–310. doi: 10.1007/978-3-540-72540-4_17.

[5]

D. A. Cox, J. Little and D. O'Shea, Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra 3rd edition, Springer, 2012. doi: 10.1007/978-1-4757-2181-2.

[6]

I. Duursma and J. Shen, Multiplicative secret sharing schemes from Reed-Muller type codes, in Proc. 2012 IEEE Int. Symp. Inf. Theory (ISIT), IEEE, 2012,264–268.

[7]

O. Geil, S. Martin, U. Martí nez-Peñas, R. Matsumoto and D. Ruano, On asymptotically good ramp secret sharing schemes preprint, arXiv: 1502.05507

[8]

O. Geil, S. Martin, U. Martí nez-Peñas and D. Ruano, Refined analysis of RGHWs of code pairs coming from Garcia-Stichtenoths second tower J. Algebra Comb. Discrete Struct. Appl. to appear. doi: 10.13069/jacodesmath.34390.

[9]

O. GeilS. MartinR. MatsumotoD. Ruano and Y. Luo, Relative generalized Hamming weights of one-point algebraic geometric codes, IEEE Trans. Inf. Theory, 60 (2014), 5938-5949. doi: 10.1109/TIT.2014.2345375.

[10]

O. GeilR. Matsumoto and D. Ruano, Feng–Rao decoding of primary codes, Finite Fields Appl., 23 (2013), 35-52. doi: 10.1016/j.ffa.2013.03.005.

[11]

P. Heijnen, Some Classes of Linear Codes Ph. D thesis, Technische Universiteit Eindhoven, 1999.

[12]

P. Heijnen and R. Pellikaan, Generalized Hamming weights of q-ary Reed-Muller codes in IEEE Trans. Inform. Theory Citeseer, 1998. doi: 10.1109/18.651015.

[13]

T. HellesethT. Kløve and J. Mykkeltveit, The weight distribution of irreducible cyclic codes with block lengths $n_1((q^l- 1)/n)$, Discr. Math., 18 (1077), 179-211. doi: 10.1016/0012-365X(77)90078-4.

[14]

T. Høholdt, On (or in) Dick Blahut's footprint, Codes, Curves and Signals (ed. A. Vardy), Kluwer Acad. Publ. , 1998, 3–9. doi: 10.1007/978-1-4615-5121-8_1.

[15]

J. Katz and L. Trevisan, On the efficiency of local decoding procedures for error-correcting codes, in Proc. 32nd Ann. ACM Symp. Theory Comp. , ACM, 2000, 80–86. doi: 10.1145/335305.335315.

[16]

T. Kløve, The weight distribution of linear codes over $GF(q^l)$ having generator matrix over $GF(q)^*$, Discr. Math., 23 (1978), 159-168. doi: 10.1016/0012-365X(78)90114-0.

[17]

N. Koblitz, A Course in Number Theory and Cryptography Springer, 1994. doi: 10.1007/978-1-4419-8592-7.

[18]

J. KuriharaT. Uyematsu and R. Matsumoto, Secret sharing schemes based on linear codes can be precisely characterized by the relative generalized Hamming weight, IEICE Trans. Fundam. Electr. Commun. Comp. Sci., 95 (2012), 2067-2075.

[19]

K. Lee, Bounds for generalized Hamming weights of general AG codes, Finite Fields Appl., 34 (2015), 265-279. doi: 10.1016/j.ffa.2015.02.006.

[20]

Z. LiuW. Chen and Y. Luo, The relative generalized Hamming weight of linear $q$-ary codes and their subcodes, Des. Codes Crypt., 48 (2008), 111-123. doi: 10.1007/s10623-008-9170-1.

[21]

Y. LuoC. MitrpantA. H. Vinck and K. Chen, Some new characters on the wire-tap channel of type Ⅱ, IEEE Trans. Inf. Theory, 51 (2005), 1222-1229. doi: 10.1109/TIT.2004.842763.

[22]

A. B. Sørensen, Projective Reed-Muller codes, IEEE Trans. Inf. Theory, 37 (1991), 1567-1576. doi: 10.1109/18.104317.

[23]

M. Tsfasman and S. G. Vladut, Algebraic-Geometric Codes Kluwer Acad. Publ. , 1991. doi: 10.1007/978-94-011-3810-9.

[24]

V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inf. Theory, 37 (1991), 1412-1418. doi: 10.1109/18.133259.

[25]

A. D. Wyner, The wire-tap channel, Bell System Techn. J., 54 (1975), 1355-1387. doi: 10.1002/j.1538-7305.1975.tb02040.x.

[26]

S. Yekhanin, Locally decodable codes, Found. Trends Theor. Comp. Sci., 6 (2010), 139-255. doi: 10.1561/0400000030.

[27]

J. Zhang and K. Feng, Relative generalized Hamming weights of cyclic codes preprint, arXiv: 1505.07277

show all references

References:
[1]

H. E. Andersen and O. Geil, Evaluation codes from order domain theory, Finite Fields Appl., 14 (2008), 92-123. doi: 10.1016/j.ffa.2006.12.004.

[2]

T. Bains, Generalized Hamming Weights and Their Applications to Secret Sharing Schemes Master's thesis, Univ. Amsterdam, 2008.

[3]

S. L. Bezrukov and U. Leck, Macaulay posets Electr. J. Combin. 1000 (2005), DS12.

[4]

H. Chen, R. Cramer, S. Goldwasser, R. De Haan and V. Vaikuntanathan, Secure computation from random error correcting codes, in Adv. Crypt. -EUROCRYPT 2007, Springer, 2007, 291–310. doi: 10.1007/978-3-540-72540-4_17.

[5]

D. A. Cox, J. Little and D. O'Shea, Ideals, Varieties and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra 3rd edition, Springer, 2012. doi: 10.1007/978-1-4757-2181-2.

[6]

I. Duursma and J. Shen, Multiplicative secret sharing schemes from Reed-Muller type codes, in Proc. 2012 IEEE Int. Symp. Inf. Theory (ISIT), IEEE, 2012,264–268.

[7]

O. Geil, S. Martin, U. Martí nez-Peñas, R. Matsumoto and D. Ruano, On asymptotically good ramp secret sharing schemes preprint, arXiv: 1502.05507

[8]

O. Geil, S. Martin, U. Martí nez-Peñas and D. Ruano, Refined analysis of RGHWs of code pairs coming from Garcia-Stichtenoths second tower J. Algebra Comb. Discrete Struct. Appl. to appear. doi: 10.13069/jacodesmath.34390.

[9]

O. GeilS. MartinR. MatsumotoD. Ruano and Y. Luo, Relative generalized Hamming weights of one-point algebraic geometric codes, IEEE Trans. Inf. Theory, 60 (2014), 5938-5949. doi: 10.1109/TIT.2014.2345375.

[10]

O. GeilR. Matsumoto and D. Ruano, Feng–Rao decoding of primary codes, Finite Fields Appl., 23 (2013), 35-52. doi: 10.1016/j.ffa.2013.03.005.

[11]

P. Heijnen, Some Classes of Linear Codes Ph. D thesis, Technische Universiteit Eindhoven, 1999.

[12]

P. Heijnen and R. Pellikaan, Generalized Hamming weights of q-ary Reed-Muller codes in IEEE Trans. Inform. Theory Citeseer, 1998. doi: 10.1109/18.651015.

[13]

T. HellesethT. Kløve and J. Mykkeltveit, The weight distribution of irreducible cyclic codes with block lengths $n_1((q^l- 1)/n)$, Discr. Math., 18 (1077), 179-211. doi: 10.1016/0012-365X(77)90078-4.

[14]

T. Høholdt, On (or in) Dick Blahut's footprint, Codes, Curves and Signals (ed. A. Vardy), Kluwer Acad. Publ. , 1998, 3–9. doi: 10.1007/978-1-4615-5121-8_1.

[15]

J. Katz and L. Trevisan, On the efficiency of local decoding procedures for error-correcting codes, in Proc. 32nd Ann. ACM Symp. Theory Comp. , ACM, 2000, 80–86. doi: 10.1145/335305.335315.

[16]

T. Kløve, The weight distribution of linear codes over $GF(q^l)$ having generator matrix over $GF(q)^*$, Discr. Math., 23 (1978), 159-168. doi: 10.1016/0012-365X(78)90114-0.

[17]

N. Koblitz, A Course in Number Theory and Cryptography Springer, 1994. doi: 10.1007/978-1-4419-8592-7.

[18]

J. KuriharaT. Uyematsu and R. Matsumoto, Secret sharing schemes based on linear codes can be precisely characterized by the relative generalized Hamming weight, IEICE Trans. Fundam. Electr. Commun. Comp. Sci., 95 (2012), 2067-2075.

[19]

K. Lee, Bounds for generalized Hamming weights of general AG codes, Finite Fields Appl., 34 (2015), 265-279. doi: 10.1016/j.ffa.2015.02.006.

[20]

Z. LiuW. Chen and Y. Luo, The relative generalized Hamming weight of linear $q$-ary codes and their subcodes, Des. Codes Crypt., 48 (2008), 111-123. doi: 10.1007/s10623-008-9170-1.

[21]

Y. LuoC. MitrpantA. H. Vinck and K. Chen, Some new characters on the wire-tap channel of type Ⅱ, IEEE Trans. Inf. Theory, 51 (2005), 1222-1229. doi: 10.1109/TIT.2004.842763.

[22]

A. B. Sørensen, Projective Reed-Muller codes, IEEE Trans. Inf. Theory, 37 (1991), 1567-1576. doi: 10.1109/18.104317.

[23]

M. Tsfasman and S. G. Vladut, Algebraic-Geometric Codes Kluwer Acad. Publ. , 1991. doi: 10.1007/978-94-011-3810-9.

[24]

V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inf. Theory, 37 (1991), 1412-1418. doi: 10.1109/18.133259.

[25]

A. D. Wyner, The wire-tap channel, Bell System Techn. J., 54 (1975), 1355-1387. doi: 10.1002/j.1538-7305.1975.tb02040.x.

[26]

S. Yekhanin, Locally decodable codes, Found. Trends Theor. Comp. Sci., 6 (2010), 139-255. doi: 10.1561/0400000030.

[27]

J. Zhang and K. Feng, Relative generalized Hamming weights of cyclic codes preprint, arXiv: 1505.07277

Figure 1.  Calculation of GHWs and RGHWs for $C_1={\mbox{RM}}_5(5, 2)$ and $C_2={\mbox{RM}}_5(3, 2)$
Figure 2.  The recursive algorithm VECA. We use the notation $((\beta_1, \ldots , \beta_{\kappa-1}), \beta_\kappa)=(\beta_1, \ldots , \beta_{\kappa-1}, \beta_\kappa)$ for concatenation
Figure 3.  The algorithm RHO
Table 1.  $C_1={\mbox{RM}}_5(2, 2), C_2={\mbox{RM}}_5(1, 2)$
$r=m$ $d_r(C_1)$ $M_m(C_1, C_2)$
1 15 15
2 19 19
3 20 22
$r=m$ $d_r(C_1)$ $M_m(C_1, C_2)$
1 15 15
2 19 19
3 20 22
Table 2.  $C_1={\mbox{RM}}_5(3, 2), C_2={\mbox{RM}}_5(2, 2)$
$r=m$ $d_r(C_1)$ $M_m(C_1, C_2)$
1 10 10
2 14 14
3 15 17
4 18 19
$r=m$ $d_r(C_1)$ $M_m(C_1, C_2)$
1 10 10
2 14 14
3 15 17
4 18 19
Table 3.  $C_1={\mbox{RM}}_5(4, 2), C_2={\mbox{RM}}_5(3, 2)$
$r=m$ $d_r(C_1)$ $M_m(C_1, C_2)$
1 5 5
2 9 9
3 10 12
4 13 14
5 14 15
$r=m$ $d_r(C_1)$ $M_m(C_1, C_2)$
1 5 5
2 9 9
3 10 12
4 13 14
5 14 15
Table 4.  $C_1={\mbox{RM}}_5(5, 2), C_2={\mbox{RM}}_5(4, 2)$
$r=m$ $d_r(C_1)$ $M_m(C_1, C_2)$
1 4 4
2 5 7
3 8 9
4 9 10
$r=m$ $d_r(C_1)$ $M_m(C_1, C_2)$
1 4 4
2 5 7
3 8 9
4 9 10
Table 5.  $C_1={\mbox{RM}}_5(6, 2), C_2={\mbox{RM}}_5(5, 2)$
$r=m$ $d_r(C_1)$ $M_m(C_1, C_2)$
1 3 3
2 4 5
3 5 6
$r=m$ $d_r(C_1)$ $M_m(C_1, C_2)$
1 3 3
2 4 5
3 5 6
Table 6.  The special case $u_2=q-2$ and $t=1$ with $q=16$. That is, $C_1={\mbox{RM}}_{16}(15, 2)$ and $C_2={\mbox{RM}}_{16}(14, 2)$. The function ${\mbox{diff}}(m)$ equals $M_m(C_1, C_2)-d_m(C_1)$
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
${\mbox{diff}}(m)$ 0 0 14 15 29 43 45 59 73 87 90 104 118 132 146 150
$M_m(C_1, C_2)$ 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241
m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
${\mbox{diff}}(m)$ 0 0 14 15 29 43 45 59 73 87 90 104 118 132 146 150
$M_m(C_1, C_2)$ 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241
Table 7.  Scheme based on $C_1 = RM_8(6, 2)$ and $C_2 = RM_8(5, 2)$. For local error-correction 7 queries are needed
$m$ 1 2 3 4 5 6 7
$t_m$ 6 12 17 21 24 26 27
$t_m^\prime$ 6 7 13 14 15 20 21
$r_m$ 22 24 27 31 36 42 49
$r_m^\prime$ 28 33 34 35 41 42 49
$m$ 1 2 3 4 5 6 7
$t_m$ 6 12 17 21 24 26 27
$t_m^\prime$ 6 7 13 14 15 20 21
$r_m$ 22 24 27 31 36 42 49
$r_m^\prime$ 28 33 34 35 41 42 49
Table 8.  Scheme based on $C_1 = RM_8(6, 2)$ and $C_2 = RM_8(4, 2)$. For local error-correction 7 queries are needed
$m$ 1 2 3 4 5 6 7 8 9 10 11 12 13
$t_m$ 5 6 11 12 16 17 20 21 23 24 25 26 27
$t_m^\prime$ 5 6 7 12 13 14 15 19 20 21 22 23 26
$r_m$ 16 17 19 20 23 24 28 29 34 35 41 42 49
$r_m^\prime$ 19 20 21 25 26 27 28 33 34 35 41 42 49
$m$ 1 2 3 4 5 6 7 8 9 10 11 12 13
$t_m$ 5 6 11 12 16 17 20 21 23 24 25 26 27
$t_m^\prime$ 5 6 7 12 13 14 15 19 20 21 22 23 26
$r_m$ 16 17 19 20 23 24 28 29 34 35 41 42 49
$r_m^\prime$ 19 20 21 25 26 27 28 33 34 35 41 42 49
Table 9.  Scheme based on $C_1 = RM_8(5, 2)$ and $C_2 = RM_8(4, 2)$. For local error-correction 6 or 7 queries are needed, depending on the error-probability
$m$ 1 2 3 4 5 6
$t_m$ 5 10 14 17 19 20
$t_m^\prime$ 5 6 7 12 13 14
$r_m$ 16 19 23 28 34 41
$r_m^\prime$ 25 26 27 33 34 41
$m$ 1 2 3 4 5 6
$t_m$ 5 10 14 17 19 20
$t_m^\prime$ 5 6 7 12 13 14
$r_m$ 16 19 23 28 34 41
$r_m^\prime$ 25 26 27 33 34 41
Table 10.  Scheme based on $C_1 = RM_8(5, 2)$ and $C_2 = RM_8(3, 2)$. For local error-correction 6 or 7 queries are needed, depending on the error-probability
$m$ 1 2 3 4 5 6 7 8 9 10 11
$t_m$ 4 5 9 10 13 14 16 17 18 19 20
$t_m^\prime$ 4 5 6 7 11 12 13 14 15 18 19
$r_m$ 11 12 15 16 20 21 26 27 33 34 41
$r_m^\prime$ 13 17 18 19 20 25 26 27 33 34 41
$m$ 1 2 3 4 5 6 7 8 9 10 11
$t_m$ 4 5 9 10 13 14 16 17 18 19 20
$t_m^\prime$ 4 5 6 7 11 12 13 14 15 18 19
$r_m$ 11 12 15 16 20 21 26 27 33 34 41
$r_m^\prime$ 13 17 18 19 20 25 26 27 33 34 41
Table 11.  Scheme based on $C_1 = RM_8(5, 2)$ and $C_2 = RM_8(2, 2)$. For local error-correction 6 or 7 queries are needed, depending on the error-probability
$m$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$t_m$ 3 4 5 8 9 10 12 13 14 15 16 17 18 19 20
$t_m^\prime$ 3 4 5 6 7 10 11 12 13 14 15 17 18 19 20
$r_m$ 7 8 9 12 13 14 18 19 20 25 26 27 33 34 41
$r_m^\prime$ 9 10 11 12 13 17 18 19 20 25 26 27 33 34 41
$m$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$t_m$ 3 4 5 8 9 10 12 13 14 15 16 17 18 19 20
$t_m^\prime$ 3 4 5 6 7 10 11 12 13 14 15 17 18 19 20
$r_m$ 7 8 9 12 13 14 18 19 20 25 26 27 33 34 41
$r_m^\prime$ 9 10 11 12 13 17 18 19 20 25 26 27 33 34 41
Table 12.  Scheme based on $C_1 = RM_8(4, 2)$ and $C_2 = RM_8(3, 2)$. For local error-correction 5 or 7 queries are needed, depending on the error-probability
$m$ 1 2 3 4 5
$t_m(RGHW)$ 4 8 11 13 14
$t_m(GHW)$ 4 5 6 7 11
$r_m(RGHW)$ 11 15 20 26 33
$r_m(GHW)$ 18 19 25 26 33
$m$ 1 2 3 4 5
$t_m(RGHW)$ 4 8 11 13 14
$t_m(GHW)$ 4 5 6 7 11
$r_m(RGHW)$ 11 15 20 26 33
$r_m(GHW)$ 18 19 25 26 33
Table 13.  Scheme based on $C_1 = RM_{16}(14, 2)$ and $C_2 = RM_{16}(13, 2)$. For local error-correction 15 queries are needed
$m$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$t_m$ 14 28 41 53 64 74 83 91 98 104 109 113 116 118 119
$t_m^\prime$ 14 15 29 30 31 44 45 46 47 59 60 61 62 63 74
$r_m$ 106 108 111 115 120 126 133 141 150 160 171 183 196 210 225
$r_m^\prime$ 161 162 163 164 165 177 178 179 180 193 194 195 209 210 225
$m$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
$t_m$ 14 28 41 53 64 74 83 91 98 104 109 113 116 118 119
$t_m^\prime$ 14 15 29 30 31 44 45 46 47 59 60 61 62 63 74
$r_m$ 106 108 111 115 120 126 133 141 150 160 171 183 196 210 225
$r_m^\prime$ 161 162 163 164 165 177 178 179 180 193 194 195 209 210 225
Table 14.  Scheme based on $C_1 = RM_{16}(13, 2)$ and $C_2 = RM_{16}(12, 2)$. For local error-correction 14 or 15 queries are needed, depending on the error-probability
$m$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
$t_m$ 13 26 38 49 59 68 76 83 89 94 98 101 103 104
$t_m^\prime$ 13 14 15 28 29 30 31 43 44 45 46 47 58 59
$r_m$ 92 95 99 104 110 117 125 134 144 155 167 180 194 209
$r_m^\prime$ 146 147 148 149 161 162 163 164 177 178 179 193 194 209
$m$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
$t_m$ 13 26 38 49 59 68 76 83 89 94 98 101 103 104
$t_m^\prime$ 13 14 15 28 29 30 31 43 44 45 46 47 58 59
$r_m$ 92 95 99 104 110 117 125 134 144 155 167 180 194 209
$r_m^\prime$ 146 147 148 149 161 162 163 164 177 178 179 193 194 209
Table 15.  Scheme based on $C_1 = RM_{16}(12, 2)$ and $C_2 = RM_{16}(11, 2)$. For local error-correction 13 or 15 queries are needed, depending on the error-probability
$m$ 1 2 3 4 5 6 7 8 9 10 11 12 13
$t_m$ 12 24 35 45 54 62 69 75 80 84 87 89 90
$t_m^\prime$ 12 13 14 15 27 28 29 30 31 42 43 44 45
$r_m$ 79 83 88 94 101 109 118 128 139 151 164 178 193
$r_m^\prime$ 131 132 133 145 146 147 148 161 162 163 177 178 193
$m$ 1 2 3 4 5 6 7 8 9 10 11 12 13
$t_m$ 12 24 35 45 54 62 69 75 80 84 87 89 90
$t_m^\prime$ 12 13 14 15 27 28 29 30 31 42 43 44 45
$r_m$ 79 83 88 94 101 109 118 128 139 151 164 178 193
$r_m^\prime$ 131 132 133 145 146 147 148 161 162 163 177 178 193
Table 16.  Scheme based on $C_1 = RM_{16}(11, 2)$ and $C_2 = RM_{16}(10, 2)$. For local error-correction 12 or 15 queries are needed, depending on the error-probability
$m$ 1 2 3 4 5 6 7 8 9 10 11 12
$t_m$ 11 22 32 41 49 56 62 67 71 74 76 77
$t_m^\prime$ 11 12 13 14 15 26 27 28 29 30 31 41
$r_m$ 67 72 78 85 93 102 112 123 135 148 162 177
$r_m^\prime$ 116 117 129 130 131 132 145 146 147 161 162 177
$m$ 1 2 3 4 5 6 7 8 9 10 11 12
$t_m$ 11 22 32 41 49 56 62 67 71 74 76 77
$t_m^\prime$ 11 12 13 14 15 26 27 28 29 30 31 41
$r_m$ 67 72 78 85 93 102 112 123 135 148 162 177
$r_m^\prime$ 116 117 129 130 131 132 145 146 147 161 162 177
Table 17.  Scheme based on $C_1 = RM_{16}(10, 2)$ and $C_2 = RM_{16}(9, 2)$. For local error-correction 11 or 15 queries are needed, depending on the error-probability
$m$ 1 2 3 4 5 6 7 8 9 10 11
$t_m$ 10 20 29 37 44 50 55 59 62 64 65
$t_m^\prime$ 10 11 12 13 14 15 25 26 27 28 29
$r_m$ 56 62 69 77 86 96 107 119 132 146 161
$r_m^\prime$ 101 113 114 115 116 129 130 131 145 146 161
$m$ 1 2 3 4 5 6 7 8 9 10 11
$t_m$ 10 20 29 37 44 50 55 59 62 64 65
$t_m^\prime$ 10 11 12 13 14 15 25 26 27 28 29
$r_m$ 56 62 69 77 86 96 107 119 132 146 161
$r_m^\prime$ 101 113 114 115 116 129 130 131 145 146 161
Table 18.  Scheme based on $C_1 = RM_{16}(9, 2)$ and $C_2 = RM_{16}(8, 2)$. For local error-correction 10 or 15 queries are needed, depending on the error-probability
$m$ 1 2 3 4 5 6 7 8 9 10
$t_m$ 9 18 26 33 39 44 48 51 53 54
$t_m^\prime$ 9 10 11 12 13 14 15 24 25 26
$r_m$ 46 53 61 70 80 91 103 116 130 145
$r_m^\prime$ 97 98 99 100 113 114 115 129 130 145
$m$ 1 2 3 4 5 6 7 8 9 10
$t_m$ 9 18 26 33 39 44 48 51 53 54
$t_m^\prime$ 9 10 11 12 13 14 15 24 25 26
$r_m$ 46 53 61 70 80 91 103 116 130 145
$r_m^\prime$ 97 98 99 100 113 114 115 129 130 145
[1]

Andreas Klein, Leo Storme. On the non-minimality of the largest weight codewords in the binary Reed-Muller codes. Advances in Mathematics of Communications, 2011, 5 (2) : 333-337. doi: 10.3934/amc.2011.5.333

[2]

Daniele Bartoli, Adnen Sboui, Leo Storme. Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10 (2) : 355-365. doi: 10.3934/amc.2016010

[3]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[4]

Stefka Bouyuklieva, Zlatko Varbanov. Some connections between self-dual codes, combinatorial designs and secret sharing schemes. Advances in Mathematics of Communications, 2011, 5 (2) : 191-198. doi: 10.3934/amc.2011.5.191

[5]

Olof Heden, Denis S. Krotov. On the structure of non-full-rank perfect $q$-ary codes. Advances in Mathematics of Communications, 2011, 5 (2) : 149-156. doi: 10.3934/amc.2011.5.149

[6]

Joaquim Borges, Josep Rifà, Victor A. Zinoviev. On $q$-ary linear completely regular codes with $\rho=2$ and antipodal dual. Advances in Mathematics of Communications, 2010, 4 (4) : 567-578. doi: 10.3934/amc.2010.4.567

[7]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

[8]

Peter Beelen, David Glynn, Tom Høholdt, Krishna Kaipa. Counting generalized Reed-Solomon codes. Advances in Mathematics of Communications, 2017, 11 (4) : 777-790. doi: 10.3934/amc.2017057

[9]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[10]

Luis Álvarez–cónsul, David Fernández. Noncommutative bi-symplectic $\mathbb{N}Q$-algebras of weight 1. Conference Publications, 2015, 2015 (special) : 19-28. doi: 10.3934/proc.2015.0019

[11]

Daniele Bartoli, Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. A 3-cycle construction of complete arcs sharing $(q+3)/2$ points with a conic. Advances in Mathematics of Communications, 2013, 7 (3) : 319-334. doi: 10.3934/amc.2013.7.319

[12]

David Keyes. $\mathbb F_p$-codes, theta functions and the Hamming weight MacWilliams identity. Advances in Mathematics of Communications, 2012, 6 (4) : 401-418. doi: 10.3934/amc.2012.6.401

[13]

Alonso sepúlveda Castellanos. Generalized Hamming weights of codes over the $\mathcal{GH}$ curve. Advances in Mathematics of Communications, 2017, 11 (1) : 115-122. doi: 10.3934/amc.2017006

[14]

Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032

[15]

Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

[16]

M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281

[17]

Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35

[18]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure & Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[19]

Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113-130. doi: 10.3934/amc.2016.10.113

[20]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (6)
  • HTML views (4)
  • Cited by (1)

Other articles
by authors

[Back to Top]