August  2017, 11(3): 615-634. doi: 10.3934/amc.2017046

Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes

School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

Received  January 2016 Published  August 2017

Let $S$ be a unital ring, $S[t;\sigma,\delta]$ a skew polynomial ring where $\sigma$ is an injective endomorphism and $\delta$ a left $\sigma$-derivation, and suppose $f\in S[t;\sigma,\delta]$ has degree $m$ and an invertible leading coefficient. Using right division by $f$ to define the multiplication, we obtain unital nonassociative algebras $S_f$ on the set of skew polynomials in $S[t;\sigma,\delta]$ of degree less than $m$. We study the structure of these algebras.

When $S$ is a Galois ring and $f$ base irreducible, these algebras yield families of finite unital nonassociative rings $A$, whose set of (left or right) zero divisors has the form $pA$ for some prime $p$.

For reducible $f$, the $S_f$ can be employed both to design linear $(f,\sigma,\delta)$-codes over unital rings and to study their behaviour.

Citation: Susanne Pumplün. Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes. Advances in Mathematics of Communications, 2017, 11 (3) : 615-634. doi: 10.3934/amc.2017046
References:
[1]

Y. Alkhamees, The group of automorphisms of finite chain rings, Arab Gulf J. Scient. Res., 8 (1990), 17-28.   Google Scholar

[2]

Y. Alkhamees, The determination of the group of automorphisms of a finite chain ring of characteristic p, Q. J. Math., 42 (1991), 387-391.  doi: 10.1093/qmath/42.1.387.  Google Scholar

[3]

A. BatoulK. Guenda and T. A. Gulliver, On self-dual cyclic codes over finite chain rings, Des. Codes Crypt., 70 (2014), 347-358.  doi: 10.1007/s10623-012-9696-0.  Google Scholar

[4]

M. Bhaintwal, Skew quasi-cyclic codes over Galois rings, Des. Codes Crypt., 62 (2012), 85-101.  doi: 10.1007/s10623-011-9494-0.  Google Scholar

[5]

D. BoucherW. Geiselmann and F. Ulmer, Skew-cyclic codes, AAECC, 18 (2007), 370-389.  doi: 10.1007/s00200-007-0043-z.  Google Scholar

[6]

D. BoucherP. Solé and F. Ulmer, Skew-constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292.  doi: 10.3934/amc.2008.2.273.  Google Scholar

[7]

D. Boucher and F. Ulmer, Linear codes using skew polynomials with automorphisms and derivations, Des. Codes Cryptogr., 70 (2014), 405-431.  doi: 10.1007/s10623-012-9704-4.  Google Scholar

[8]

M. Boulagouaz and A. Leroy, $(σ, δ)$-codes, Adv. Math. Commun., 7 (2013), 463-474.  doi: 10.3934/amc.2013.7.463.  Google Scholar

[9]

C. Brown, Ph. D thesis, Univ. Nottingham, in preparation. Google Scholar

[10]

Y. Cao, On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124-135.  doi: 10.1016/j.ffa.2013.07.001.  Google Scholar

[11]

P. M. Cohn, Skew Fields. Theory of General Division Rings Cambridge Univ. Press, Cambridge, 1995. doi: 10.1017/CBO9781139087193.  Google Scholar

[12]

J. Ducoat and F. Oggier, Lattice encoding of cyclic codes from skew polynomial rings in Proc. 4th Int Castle Meet. Coding Theory Appl. Palmela, 2014. Google Scholar

[13]

J. Ducoat and F. Oggier, On skew polynomial codes and lattices from quotients of cyclic division algebras, Adv. Math. Commun., 10 (2016), 79-94.  doi: 10.3934/amc.2016.10.79.  Google Scholar

[14]

C. FengR. W. NobregaF. R. Kschischang and D. Silva, Communication over finite-chain-ring matrix channels, IEEE Trans. Inf. Theory, 60 (2014), 5899-5917.  doi: 10.1109/TIT.2014.2346079.  Google Scholar

[15]

N. Fogarty and H. Gluesing-Luerssen, A circulant approach to skew-constacyclic codes, Finite Fields Appl., 35 (2015), 92-114.  doi: 10.1016/j.ffa.2015.03.008.  Google Scholar

[16]

J. Gao and Q. Kong, Qiong 1-generator quasi-cyclic codes over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+\dots+u^{s-1}\mathbb{F}_{p^m}$, J. Franklin Inst., 350 (2013), 3260-3276.  doi: 10.1016/j.jfranklin.2013.08.001.  Google Scholar

[17]

M. Giesbrecht, Factoring in skew-polynomial rings over finite fields, J. Symb. Comput., 26 (1998), 463-486.  doi: 10.1006/jsco.1998.0224.  Google Scholar

[18]

M. Giesbrecht and Y. Zhang, Factoring and decomposing Ore polynomials over $\mathbb F_q(t)$, Proc. 2003 Int. Symp. Symb. Alg. Comp. , ACM, New York, 2003,127–134. doi: 10.1145/860854.860888.  Google Scholar

[19]

J. Gómez-Torrecillas, Basic module theory over non-commutative rings with computational aspects of operator algebras in Algebraic and Algorithmic Aspects of Differential and Integral Operators Springer, Berlin, 2012, 23-82. doi: 10.1007/978-3-642-54479-8_2.  Google Scholar

[20]

J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro, Factoring Ore polynomials over $\mathbb{F}_q(t)$ is difficult preprint, arXiv: 1505.07252 Google Scholar

[21]

S. González, V. T. Markov, C. Martíınez, A. A. Nechaev and I. F. Rúa, Nonassociative Galois rings (in Russian), Diskret. Mat. , 14 (2002), 117–132; translation in Discr. Math. Appl. , 12 (2002), 519–606.  Google Scholar

[22]

S. González, V. T. Markov, C. Martínez, A. A. Nechaev and I. F. Rúa, On cyclic topassociative generalized Galois rings, in Finite Fields and Applications, Springer, Berlin, 2004, 25–39. doi: 10.1007/978-3-540-24633-6_3.  Google Scholar

[23]

S. GonzálezV. T. MarkovC. MartínezA. A. Nechaev and I. F. Rúa, Cyclic generalized Galois rings, Comm. Algebra, 33 (2005), 4467-4478.  doi: 10.1080/00927870500274796.  Google Scholar

[24]

S. GonzálezC. MartínezI. F. RúaV. T. Markov and A. A. Nechaev, Coordinate sets of generalized Galois rings, J. Algebra Appl., 3 (2004), 31-48.  doi: 10.1142/S0219498804000678.  Google Scholar

[25]

N. Jacobson, Finite-Dimensional Division Algebras over Fields Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-02429-0.  Google Scholar

[26]

S. JitmanS. Ling and P. Udomkavanich, Skew constacyclic codes over finite chain rings, Adv. Math. Commun., 6 (2012), 39-63.  doi: 10.3934/amc.2012.6.39.  Google Scholar

[27]

B. KongX. Zheng and H. Ma, The depth spectrums of constacyclic codes over finite chain rings, Discrete Math., 338 (2015), 256-261.  doi: 10.1016/j.disc.2014.09.013.  Google Scholar

[28]

M. Lavrauw and J. Sheekey, Semifields from skew polynomial rings, Adv. Geom., 13 (2013), 583-604.  doi: 10.1515/advgeom-2013-0003.  Google Scholar

[29]

A. Leroy, Noncommutative polynomial maps J. Algebra Appl. 11 (2012), 16. doi: 10.1142/S0219498812500764.  Google Scholar

[30]

X. Liu and H. Liu, LCD codes over finite chain rings, Finite Fields Appl., 34 (2015), 1-19.  doi: 10.1016/j.ffa.2015.01.004.  Google Scholar

[31]

B. McDonald, Finite Rings with Identity Marcel Dekker Inc. , New York, 1974.  Google Scholar

[32]

F. Oggier and B. A. Sethuraman, Quotients of orders in cyclic algebras and space-time codes, Adv. Math. Commun., 7 (2013), 441-461.  doi: 10.3934/amc.2013.7.441.  Google Scholar

[33]

J.-C. Petit, Sur certains quasi-corps généralisant un type d'anneau-quotient, Sémin. Dubriel. Algébre Th. Nombr., 20 (1966), 1-18.   Google Scholar

[34]

S. Pumplün, A note on linear codes and nonassociative algebras obtained from skew polynomial rings preprint, arXiv: 1504.00190 Google Scholar

[35]

S. Pumplün, How to obtain lattices from $(f, σ, δ)$-codes via a generalization of Construction A preprint, arXiv: 1607.03787 Google Scholar

[36]

S. Pumplün, Quotients of orders in algebras obtained from skew polynomials and possible applications preprint, arXiv: 1609.04201 Google Scholar

[37]

S. Pumplün, Tensor products of nonassociative cyclic algebras, J. Algebra, 451 (2016), 145-165.  doi: 10.1016/j.jalgebra.2015.12.007.  Google Scholar

[38]

S. Pumplün and A. Steele, Classes of nonassociative algebras carrying maps of degree $n$ with interesting properties available at http://agt2.cie.uma.es/~loos/jordan/archive/semimult/semimult.pdf Google Scholar

[39]

S. Pumplün and A. Steele, Fast-decodable MIDO codes from nonassociative algebras, Int. J. Inf. Coding Theory, 3 (2015), 15-38.  doi: 10.1504/IJICOT.2015.068695.  Google Scholar

[40]

S. Pumplün and A. Steele, The nonassociative algebras used to build fast-decodable space-time block codes, Adv. Math. Commun., 9 (2015), 449-469.  doi: 10.3934/amc.2015.9.449.  Google Scholar

[41]

L. Rónyai, Factoring polynomials over finite fields, J. Algorithms, 9 (1988), 391-400.  doi: 10.1016/0196-6774(88)90029-6.  Google Scholar

[42]

R. Sandler, Autotopism groups of some finite non-associative algebras, Amer. J. Math., 84 (1962), 239-264.  doi: 10.2307/2372761.  Google Scholar

[43]

R. D. Schafer, An Introduction to Nonassociative Algebras Dover Publ. Inc. , New York, 1995.  Google Scholar

[44]

M. F. Singer, Testing reducibility of linear differential operators: a group-theoretic perspective, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 77-104.  doi: 10.1007/BF01191378.  Google Scholar

[45]

A. Steele, Some New Classes of Algebras Ph. D thesis, Univ. Nottingham, 2013. Google Scholar

[46]

A. Steele, Nonassociative cyclic algebras, Israel J. Math., 200 (2014), 361-387.  doi: 10.1007/s11856-014-0021-7.  Google Scholar

[47]

A. Steele, S. Pumplün and F. Oggier, MIDO space-time codes from associative and nonassociative cyclic algebras, Inf. Theory Workshop (ITW), IEEE, 2012,192–196. doi: 10.1007/s11856-014-0021-7.  Google Scholar

[48]

E. A. Whelan, A note on finite local rings, Rocky Mount. J. Math., 22 (1992), 757-759.  doi: 10.1216/rmjm/1181072765.  Google Scholar

show all references

References:
[1]

Y. Alkhamees, The group of automorphisms of finite chain rings, Arab Gulf J. Scient. Res., 8 (1990), 17-28.   Google Scholar

[2]

Y. Alkhamees, The determination of the group of automorphisms of a finite chain ring of characteristic p, Q. J. Math., 42 (1991), 387-391.  doi: 10.1093/qmath/42.1.387.  Google Scholar

[3]

A. BatoulK. Guenda and T. A. Gulliver, On self-dual cyclic codes over finite chain rings, Des. Codes Crypt., 70 (2014), 347-358.  doi: 10.1007/s10623-012-9696-0.  Google Scholar

[4]

M. Bhaintwal, Skew quasi-cyclic codes over Galois rings, Des. Codes Crypt., 62 (2012), 85-101.  doi: 10.1007/s10623-011-9494-0.  Google Scholar

[5]

D. BoucherW. Geiselmann and F. Ulmer, Skew-cyclic codes, AAECC, 18 (2007), 370-389.  doi: 10.1007/s00200-007-0043-z.  Google Scholar

[6]

D. BoucherP. Solé and F. Ulmer, Skew-constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292.  doi: 10.3934/amc.2008.2.273.  Google Scholar

[7]

D. Boucher and F. Ulmer, Linear codes using skew polynomials with automorphisms and derivations, Des. Codes Cryptogr., 70 (2014), 405-431.  doi: 10.1007/s10623-012-9704-4.  Google Scholar

[8]

M. Boulagouaz and A. Leroy, $(σ, δ)$-codes, Adv. Math. Commun., 7 (2013), 463-474.  doi: 10.3934/amc.2013.7.463.  Google Scholar

[9]

C. Brown, Ph. D thesis, Univ. Nottingham, in preparation. Google Scholar

[10]

Y. Cao, On constacyclic codes over finite chain rings, Finite Fields Appl., 24 (2013), 124-135.  doi: 10.1016/j.ffa.2013.07.001.  Google Scholar

[11]

P. M. Cohn, Skew Fields. Theory of General Division Rings Cambridge Univ. Press, Cambridge, 1995. doi: 10.1017/CBO9781139087193.  Google Scholar

[12]

J. Ducoat and F. Oggier, Lattice encoding of cyclic codes from skew polynomial rings in Proc. 4th Int Castle Meet. Coding Theory Appl. Palmela, 2014. Google Scholar

[13]

J. Ducoat and F. Oggier, On skew polynomial codes and lattices from quotients of cyclic division algebras, Adv. Math. Commun., 10 (2016), 79-94.  doi: 10.3934/amc.2016.10.79.  Google Scholar

[14]

C. FengR. W. NobregaF. R. Kschischang and D. Silva, Communication over finite-chain-ring matrix channels, IEEE Trans. Inf. Theory, 60 (2014), 5899-5917.  doi: 10.1109/TIT.2014.2346079.  Google Scholar

[15]

N. Fogarty and H. Gluesing-Luerssen, A circulant approach to skew-constacyclic codes, Finite Fields Appl., 35 (2015), 92-114.  doi: 10.1016/j.ffa.2015.03.008.  Google Scholar

[16]

J. Gao and Q. Kong, Qiong 1-generator quasi-cyclic codes over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}+\dots+u^{s-1}\mathbb{F}_{p^m}$, J. Franklin Inst., 350 (2013), 3260-3276.  doi: 10.1016/j.jfranklin.2013.08.001.  Google Scholar

[17]

M. Giesbrecht, Factoring in skew-polynomial rings over finite fields, J. Symb. Comput., 26 (1998), 463-486.  doi: 10.1006/jsco.1998.0224.  Google Scholar

[18]

M. Giesbrecht and Y. Zhang, Factoring and decomposing Ore polynomials over $\mathbb F_q(t)$, Proc. 2003 Int. Symp. Symb. Alg. Comp. , ACM, New York, 2003,127–134. doi: 10.1145/860854.860888.  Google Scholar

[19]

J. Gómez-Torrecillas, Basic module theory over non-commutative rings with computational aspects of operator algebras in Algebraic and Algorithmic Aspects of Differential and Integral Operators Springer, Berlin, 2012, 23-82. doi: 10.1007/978-3-642-54479-8_2.  Google Scholar

[20]

J. Gómez-Torrecillas, F. J. Lobillo and G. Navarro, Factoring Ore polynomials over $\mathbb{F}_q(t)$ is difficult preprint, arXiv: 1505.07252 Google Scholar

[21]

S. González, V. T. Markov, C. Martíınez, A. A. Nechaev and I. F. Rúa, Nonassociative Galois rings (in Russian), Diskret. Mat. , 14 (2002), 117–132; translation in Discr. Math. Appl. , 12 (2002), 519–606.  Google Scholar

[22]

S. González, V. T. Markov, C. Martínez, A. A. Nechaev and I. F. Rúa, On cyclic topassociative generalized Galois rings, in Finite Fields and Applications, Springer, Berlin, 2004, 25–39. doi: 10.1007/978-3-540-24633-6_3.  Google Scholar

[23]

S. GonzálezV. T. MarkovC. MartínezA. A. Nechaev and I. F. Rúa, Cyclic generalized Galois rings, Comm. Algebra, 33 (2005), 4467-4478.  doi: 10.1080/00927870500274796.  Google Scholar

[24]

S. GonzálezC. MartínezI. F. RúaV. T. Markov and A. A. Nechaev, Coordinate sets of generalized Galois rings, J. Algebra Appl., 3 (2004), 31-48.  doi: 10.1142/S0219498804000678.  Google Scholar

[25]

N. Jacobson, Finite-Dimensional Division Algebras over Fields Springer-Verlag, Berlin, 1996. doi: 10.1007/978-3-642-02429-0.  Google Scholar

[26]

S. JitmanS. Ling and P. Udomkavanich, Skew constacyclic codes over finite chain rings, Adv. Math. Commun., 6 (2012), 39-63.  doi: 10.3934/amc.2012.6.39.  Google Scholar

[27]

B. KongX. Zheng and H. Ma, The depth spectrums of constacyclic codes over finite chain rings, Discrete Math., 338 (2015), 256-261.  doi: 10.1016/j.disc.2014.09.013.  Google Scholar

[28]

M. Lavrauw and J. Sheekey, Semifields from skew polynomial rings, Adv. Geom., 13 (2013), 583-604.  doi: 10.1515/advgeom-2013-0003.  Google Scholar

[29]

A. Leroy, Noncommutative polynomial maps J. Algebra Appl. 11 (2012), 16. doi: 10.1142/S0219498812500764.  Google Scholar

[30]

X. Liu and H. Liu, LCD codes over finite chain rings, Finite Fields Appl., 34 (2015), 1-19.  doi: 10.1016/j.ffa.2015.01.004.  Google Scholar

[31]

B. McDonald, Finite Rings with Identity Marcel Dekker Inc. , New York, 1974.  Google Scholar

[32]

F. Oggier and B. A. Sethuraman, Quotients of orders in cyclic algebras and space-time codes, Adv. Math. Commun., 7 (2013), 441-461.  doi: 10.3934/amc.2013.7.441.  Google Scholar

[33]

J.-C. Petit, Sur certains quasi-corps généralisant un type d'anneau-quotient, Sémin. Dubriel. Algébre Th. Nombr., 20 (1966), 1-18.   Google Scholar

[34]

S. Pumplün, A note on linear codes and nonassociative algebras obtained from skew polynomial rings preprint, arXiv: 1504.00190 Google Scholar

[35]

S. Pumplün, How to obtain lattices from $(f, σ, δ)$-codes via a generalization of Construction A preprint, arXiv: 1607.03787 Google Scholar

[36]

S. Pumplün, Quotients of orders in algebras obtained from skew polynomials and possible applications preprint, arXiv: 1609.04201 Google Scholar

[37]

S. Pumplün, Tensor products of nonassociative cyclic algebras, J. Algebra, 451 (2016), 145-165.  doi: 10.1016/j.jalgebra.2015.12.007.  Google Scholar

[38]

S. Pumplün and A. Steele, Classes of nonassociative algebras carrying maps of degree $n$ with interesting properties available at http://agt2.cie.uma.es/~loos/jordan/archive/semimult/semimult.pdf Google Scholar

[39]

S. Pumplün and A. Steele, Fast-decodable MIDO codes from nonassociative algebras, Int. J. Inf. Coding Theory, 3 (2015), 15-38.  doi: 10.1504/IJICOT.2015.068695.  Google Scholar

[40]

S. Pumplün and A. Steele, The nonassociative algebras used to build fast-decodable space-time block codes, Adv. Math. Commun., 9 (2015), 449-469.  doi: 10.3934/amc.2015.9.449.  Google Scholar

[41]

L. Rónyai, Factoring polynomials over finite fields, J. Algorithms, 9 (1988), 391-400.  doi: 10.1016/0196-6774(88)90029-6.  Google Scholar

[42]

R. Sandler, Autotopism groups of some finite non-associative algebras, Amer. J. Math., 84 (1962), 239-264.  doi: 10.2307/2372761.  Google Scholar

[43]

R. D. Schafer, An Introduction to Nonassociative Algebras Dover Publ. Inc. , New York, 1995.  Google Scholar

[44]

M. F. Singer, Testing reducibility of linear differential operators: a group-theoretic perspective, Appl. Algebra Engrg. Comm. Comput., 7 (1996), 77-104.  doi: 10.1007/BF01191378.  Google Scholar

[45]

A. Steele, Some New Classes of Algebras Ph. D thesis, Univ. Nottingham, 2013. Google Scholar

[46]

A. Steele, Nonassociative cyclic algebras, Israel J. Math., 200 (2014), 361-387.  doi: 10.1007/s11856-014-0021-7.  Google Scholar

[47]

A. Steele, S. Pumplün and F. Oggier, MIDO space-time codes from associative and nonassociative cyclic algebras, Inf. Theory Workshop (ITW), IEEE, 2012,192–196. doi: 10.1007/s11856-014-0021-7.  Google Scholar

[48]

E. A. Whelan, A note on finite local rings, Rocky Mount. J. Math., 22 (1992), 757-759.  doi: 10.1216/rmjm/1181072765.  Google Scholar

[1]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[2]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[3]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[4]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[5]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[6]

Jong Yoon Hyun, Yoonjin Lee, Yansheng Wu. Connection of $ p $-ary $ t $-weight linear codes to Ramanujan Cayley graphs with $ t+1 $ eigenvalues. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020133

[7]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

[8]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[9]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[10]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[11]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[12]

Juliang Zhang, Jian Chen. Information sharing in a make-to-stock supply chain. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1169-1189. doi: 10.3934/jimo.2014.10.1169

[13]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[14]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[15]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[16]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[17]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[18]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[19]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[20]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (153)
  • HTML views (52)
  • Cited by (5)

Other articles
by authors

[Back to Top]