September 2017, 24: 100-109. doi: 10.3934/era.2017.24.011

Bounds between Laplace and Steklov eigenvalues on nonnegatively curved manifolds

Department of Mathematics and Statistics, McGill University, Burnside Hall, 805 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 0B9

The author is grateful to Iosif Polterovich for fruitful discussions and comments on the initial versions of the manuscript. The author thanks Spiro Karigiannis for providing the reference [13]

Received  May 04, 2017 Revised  August 16, 2017 Published  September 2017

Consider a compact Riemannian manifold with boundary. In this short note we prove that under certain positive curvature assumptions on the manifold and its boundary the Steklov eigenvalues of the manifold are controlled by the Laplace eigenvalues of the boundary. Additionally, in two dimensions we obtain an upper bound for Steklov eigenvalues in terms of topology of the surface without any curvature restrictions.

Citation: Mikhail Karpukhin. Bounds between Laplace and Steklov eigenvalues on nonnegatively curved manifolds. Electronic Research Announcements, 2017, 24: 100-109. doi: 10.3934/era.2017.24.011
References:
[1]

M. Belishev and V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull. Sci. Math., 132 (2008), 128-145. doi: 10.1016/j.bulsci.2006.11.003.

[2]

I. Chavel, Riemannian Geometry, A Modern Introduction, 2nd edition, Cambridge University Press, New York, 2006. doi: 10.1017/CBO9780511616822.

[3]

A. Fraser and R. Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math., 226 (2011), 4011-4030. doi: 10.1016/j.aim.2010.11.007.

[4]

A. Fraser and R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball, Inventiones mathematicae, 203 (2016), 823-890. doi: 10.1007/s00222-015-0604-x.

[5]

A. GirouardL. ParnovskiI. Polterovich and D. Sher, The Steklov spectrum of surfaces: Asymptotics and invariants, Math. Proc. Camb. Phil. Soc., 157 (2014), 379-389. doi: 10.1017/S030500411400036X.

[6]

A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem, J. of Spectral Theory, 7 (2017), 321-359. doi: 10.4171/JST/164.

[7]

A. Girouard and I. Polterovich, Upper bounds for Steklov eigenvalues on surfaces, Electron. Res. Announc. Math. Sci., 19 (2012), 77-85. doi: 10.3934/era.2012.19.77.

[8]

A. Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem, J. of Functional Analysis, 261 (2011), 3419-3436. doi: 10.1016/j.jfa.2011.08.003.

[9]

J HerschL. Payne and M. Schiffer, Some inequalities for Stekloff eigenvalues, Arch. Rational Mech. Anal., 57 (1975), 99-114. doi: 10.1007/BF00248412.

[10]

M. S. Joshi and W. R. B. Lionheart, An inverse boundary value problem for harmonic differential forms, Asymptot. Anal., 41 (2005), 93-106.

[11]

M. Karpukhin, Steklov problem on differential forms, Preprint, arXiv: 1705.08951.

[12]

G. Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces, Adv. Math., 258 (2014), 191-239. doi: 10.1016/j.aim.2014.03.006.

[13]

P. Petersen, Demystifying the Weitzenböck curvature operator Preprint available from: http://www.math.ucla.edu/~petersen/.

[14]

S. Raulot and A. Savo, On the first eigenvalue of the Dirichlet-to-Neumann operator on forms, J. of Functional Analysis, 262 (2012), 889-914. doi: 10.1016/j.jfa.2011.10.008.

[15]

G. Schwarz, Hodge Decomposition – A Method for Solving Boundary Value Problems, Lecture Notes in Math., Springer, (1995). doi: 10.1007/BFb0095978.

[16]

V. Sharafutdinov and C. Shonkwiler, The complete Dirichlet-to-Neumann map for differential forms, J. Geom. Anal., 23 (2013), 2063-2080. doi: 10.1007/s12220-012-9320-6.

[17]

Q. Wang and C. Xia, Sharp bounds for the first non-zero Stekloff eigenvalues, J. of Functional Analysis, 257 (2009), 2635-2644. doi: 10.1016/j.jfa.2009.06.008.

[18]

C. Xia, Rigidity for compact manifolds with boundary and non-negative Ricci curvature, Proc. Amer. Math. Soc., 125 (1997), 1801-1806. doi: 10.1090/S0002-9939-97-04078-1.

[19]

L. Yang and C. Yu, A higher dimensional generalization of Hersch-Payne-Schiffer inequality for Steklov eigenvalues, J. of Functional Analysis, 272 (2017), 4122-4130. doi: 10.1016/j.jfa.2017.02.023.

show all references

References:
[1]

M. Belishev and V. Sharafutdinov, Dirichlet to Neumann operator on differential forms, Bull. Sci. Math., 132 (2008), 128-145. doi: 10.1016/j.bulsci.2006.11.003.

[2]

I. Chavel, Riemannian Geometry, A Modern Introduction, 2nd edition, Cambridge University Press, New York, 2006. doi: 10.1017/CBO9780511616822.

[3]

A. Fraser and R. Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces, Adv. Math., 226 (2011), 4011-4030. doi: 10.1016/j.aim.2010.11.007.

[4]

A. Fraser and R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball, Inventiones mathematicae, 203 (2016), 823-890. doi: 10.1007/s00222-015-0604-x.

[5]

A. GirouardL. ParnovskiI. Polterovich and D. Sher, The Steklov spectrum of surfaces: Asymptotics and invariants, Math. Proc. Camb. Phil. Soc., 157 (2014), 379-389. doi: 10.1017/S030500411400036X.

[6]

A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem, J. of Spectral Theory, 7 (2017), 321-359. doi: 10.4171/JST/164.

[7]

A. Girouard and I. Polterovich, Upper bounds for Steklov eigenvalues on surfaces, Electron. Res. Announc. Math. Sci., 19 (2012), 77-85. doi: 10.3934/era.2012.19.77.

[8]

A. Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem, J. of Functional Analysis, 261 (2011), 3419-3436. doi: 10.1016/j.jfa.2011.08.003.

[9]

J HerschL. Payne and M. Schiffer, Some inequalities for Stekloff eigenvalues, Arch. Rational Mech. Anal., 57 (1975), 99-114. doi: 10.1007/BF00248412.

[10]

M. S. Joshi and W. R. B. Lionheart, An inverse boundary value problem for harmonic differential forms, Asymptot. Anal., 41 (2005), 93-106.

[11]

M. Karpukhin, Steklov problem on differential forms, Preprint, arXiv: 1705.08951.

[12]

G. Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces, Adv. Math., 258 (2014), 191-239. doi: 10.1016/j.aim.2014.03.006.

[13]

P. Petersen, Demystifying the Weitzenböck curvature operator Preprint available from: http://www.math.ucla.edu/~petersen/.

[14]

S. Raulot and A. Savo, On the first eigenvalue of the Dirichlet-to-Neumann operator on forms, J. of Functional Analysis, 262 (2012), 889-914. doi: 10.1016/j.jfa.2011.10.008.

[15]

G. Schwarz, Hodge Decomposition – A Method for Solving Boundary Value Problems, Lecture Notes in Math., Springer, (1995). doi: 10.1007/BFb0095978.

[16]

V. Sharafutdinov and C. Shonkwiler, The complete Dirichlet-to-Neumann map for differential forms, J. Geom. Anal., 23 (2013), 2063-2080. doi: 10.1007/s12220-012-9320-6.

[17]

Q. Wang and C. Xia, Sharp bounds for the first non-zero Stekloff eigenvalues, J. of Functional Analysis, 257 (2009), 2635-2644. doi: 10.1016/j.jfa.2009.06.008.

[18]

C. Xia, Rigidity for compact manifolds with boundary and non-negative Ricci curvature, Proc. Amer. Math. Soc., 125 (1997), 1801-1806. doi: 10.1090/S0002-9939-97-04078-1.

[19]

L. Yang and C. Yu, A higher dimensional generalization of Hersch-Payne-Schiffer inequality for Steklov eigenvalues, J. of Functional Analysis, 272 (2017), 4122-4130. doi: 10.1016/j.jfa.2017.02.023.

[1]

Alexandre Girouard, Iosif Polterovich. Upper bounds for Steklov eigenvalues on surfaces. Electronic Research Announcements, 2012, 19: 77-85. doi: 10.3934/era.2012.19.77

[2]

Bruno Colbois, Alexandre Girouard. The spectral gap of graphs and Steklov eigenvalues on surfaces. Electronic Research Announcements, 2014, 21: 19-27. doi: 10.3934/era.2014.21.19

[3]

Tiffany A. Jones, Lou Caccetta, Volker Rehbock. Optimisation modelling of cancer growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 115-123. doi: 10.3934/dcdsb.2017006

[4]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[5]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[6]

Manuel V. C. Vieira. Derivatives of eigenvalues and Jordan frames. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 115-126. doi: 10.3934/naco.2016003

[7]

Fioralba Cakoni, Drossos Gintides. New results on transmission eigenvalues. Inverse Problems & Imaging, 2010, 4 (1) : 39-48. doi: 10.3934/ipi.2010.4.39

[8]

Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155

[9]

Toshiyuki Ogawa, Takashi Okuda. Bifurcation analysis to Swift-Hohenberg equation with Steklov type boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 273-297. doi: 10.3934/dcds.2009.25.273

[10]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[11]

Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089

[12]

Bruce Hughes. Geometric topology of stratified spaces. Electronic Research Announcements, 1996, 2: 73-81.

[13]

Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267

[14]

Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173

[15]

Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517

[16]

Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473

[17]

Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019

[18]

Andrew James Bruce, Katarzyna Grabowska, Giovanni Moreno. On a geometric framework for Lagrangian supermechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 411-437. doi: 10.3934/jgm.2017016

[19]

Armin Lechleiter. The factorization method is independent of transmission eigenvalues. Inverse Problems & Imaging, 2009, 3 (1) : 123-138. doi: 10.3934/ipi.2009.3.123

[20]

Gianne Derks, Sara Maad, Björn Sandstede. Perturbations of embedded eigenvalues for the bilaplacian on a cylinder. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 801-821. doi: 10.3934/dcds.2008.21.801

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (13)
  • HTML views (165)
  • Cited by (0)

Other articles
by authors

[Back to Top]