# American Institute of Mathematical Sciences

• Previous Article
Exact and approximate controllability of coupled one-dimensional hyperbolic equations
• EECT Home
• This Issue
• Next Article
Finite determining parameters feedback control for distributed nonlinear dissipative systems -a computational study
December 2017, 6(4): 517-534. doi: 10.3934/eect.2017026

## Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay

 Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China

* Corresponding author: Xianlong Fu

Received  December 2016 Revised  July 2017 Published  September 2017

Fund Project: This work is supported by NSF of China (Nos. 11671142 and 11371087), STCSM (No. 13dz2260400) and Shanghai Leading Academic Discipline Project (No. B407)

The controllability of non-autonomous evolution systems is an important and difficult topic in control theory. In this paper, we study the approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. The theory of linear evolution operators is used instead of $C_0-$semigroup to discuss the problem. Some sufficient conditions of approximate controllability are formulated and proved here by using the resolvent operator condition. Finally, two examples are provided to illustrate the applications of the obtained results.

Citation: Xianlong Fu. Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evolution Equations & Control Theory, 2017, 6 (4) : 517-534. doi: 10.3934/eect.2017026
##### References:
 [1] O. Arino, M. Habid and R. Bravo de la Parra, A mathematical model of growth of population of fish in the larval stage: density-dependence effects, Math. Biosc., 150 (1998), 1-20. doi: 10.1016/S0025-5564(98)00008-X. [2] Z. Balanov, Q. Hu and W. Krawcewicz, Global Hopf bifurcation of differential equations with threshold type state-dependent delay, J. Diff. Equ., 257 (2014), 2622-2670. doi: 10.1016/j.jde.2014.05.053. [3] A. E. Bashirov and N. I. Mahmudov, On concepts of controllability for linear deterministic and stochastic systems, SIAM J. Control Optim., 37 (1999), 1808-1821. doi: 10.1137/S036301299732184X. [4] M. Belmekki, M. Benchohra and K. Ezzinbi, Existence results for some partial functional differential equations with state-dependent delay, Appl. Math. Lett., 24 (2011), 1810-1816. doi: 10.1016/j.aml.2011.04.039. [5] R. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6. [6] J. P. Dauer and N. I. Mahmudov, Approximate controllability of semilinear functional equations in Hilbert spaces, J. Math. Anal. Appl., 273 (2002), 310-327. doi: 10.1016/S0022-247X(02)00225-1. [7] W. Fitzgibbon, Semilinear functional differential equations in Banach space, J. Diff. Equ., 29 (1978), 1-14. doi: 10.1016/0022-0396(78)90037-2. [8] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York. 1969. [9] X. Fu and X. Liu, Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay, J. Math. Anal. Appl., 325 (2007), 249-267. doi: 10.1016/j.jmaa.2006.01.048. [10] X. Fu and K. Mei, Approximate controllability of semilinear partial functional differential systems, J. Dyn. Control Syst., 15 (2009), 425-443. doi: 10.1007/s10883-009-9068-x. [11] X. Fu and J. Zhang, Approximate controllability of neutral functional differential systems with state-dependent delay, Chinese Ann. Math. (B), 37 (2016), 291-308. doi: 10.1007/s11401-016-0934-z. [12] R. K. Georgr, Approximate controllability of non-autonomous semiliear systems, Nonl. Anal. (TMA), 24 (1995), 1377-1393. doi: 10.1016/0362-546X(94)E0082-R. [13] J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial ekvac., 21 (1978), 11-41. [14] E. Hernández and D. O'Regan, $C^α-$Hölder classical solutionss for neutral differential euations, Discr. Cont. Dyn. Syst. (A), 29 (2011), 241-260. [15] E. Hernández, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay, Nonl. Anal. (RWA), 7 (2006), 510-519. doi: 10.1016/j.nonrwa.2005.03.014. [16] Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Springer-verlag, Berlin, 1991. doi: 10.1007/BFb0084432. [17] J. Jeong, Y. Kwun and J. Park, Approximate controllability for semilinear retarded functional differential equations, J. Dyn. Contr. Syst., 5 (1999), 329-346. doi: 10.1023/A:1021714500075. [18] J. Jeong and H. Roh, Approximate controllability for semilinear retarded systems, J. Math. Anal. Appl., 321 (2006), 961-975. doi: 10.1016/j.jmaa.2005.09.005. [19] V. Keyantuo and C. Lizama, Hölder continuous solutions for integro-differential equations and maximal regularity, J. Diff. Equ., 230 (2006), 634-660. doi: 10.1016/j.jde.2006.07.018. [20] A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213-1224. doi: 10.1137/0521066. [21] J. M. Mahaffy, J. Belair and M. C. Mackey, Hematopoietic model with moving boundary condition and state dependent delay: Applications in erythropoiesis, J. Theory Bio., 190 (1998), 135-146. [22] N.I. Mahmudov and S. Zorlu, On the approximate controllability of fractional evolution equations with compact analytic semigroup, J. Comp. Appl. Math., 259 (2014), 194-204. doi: 10.1016/j.cam.2013.06.015. [23] F. Z. Mokkedem and X. Fu, Approximate controllability for a semilinear evolut ion system with infinite delay, J. Dyn. Control Sys., 22 (2016), 71-89. doi: 10.1007/s10883-014-9252-5. [24] K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim., 25 (1987), 715-722. doi: 10.1137/0325040. [25] K. Naito, Approximate controllability for trajectories of a delay Voltera control system, J. Optim. Theory Appl., 61 (1989), 271-279. doi: 10.1007/BF00962800. [26] J. W. Nunziato, On heat conduction in materials with memory, Quart. Appl. Math., 29 (1971), 187-204. doi: 10.1090/qam/295683. [27] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. [28] S. M. Rankin III, Existence and asymptotic behavior of a functional differential equation in Banach space, J. Math. Anal. Appl., 88 (1982), 531-542. doi: 10.1016/0022-247X(82)90211-6. [29] R. Sakthivel and E. R. Ananndhi, Approximate controllability of impulsive differential equations with state-dependent delay, Int. J. control., 83 (2010), 387-393. doi: 10.1080/00207170903171348. [30] R. Sakthivel, R. Ganesh and S. M. Anthoni, Approximate controllability of fractional nonlinear differential inclusions, Appl. Math. Comp., 225 (2013), 708-717. doi: 10.1016/j.amc.2013.09.068. [31] R. Sakthivel and Y. Ren, Approximate controllability of fractional differential equations with state-dependent delay, Results Math., 63 (2013), 949-963. doi: 10.1007/s00025-012-0245-y. [32] R. Sakthivel, S. Suganya and S. M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Comp. Math. Appl., 63 (2012), 660-668. doi: 10.1016/j.camwa.2011.11.024. [33] J. P. C. dos Santos, On state-dependent delay partial neutral functional integro-differential equations, Appl. Math. Comp., 216 (2010), 1637-1644. doi: 10.1016/j.amc.2010.03.019. [34] L. Shen and J. Sun, Approximate controllability of stochastic impulsive functional systems with infinite delay, Automatica, 48 (2012), 2705-2709. doi: 10.1016/j.automatica.2012.06.098. [35] N. Sukavanam and S. Kumar, Approximate controllability of fractional order semilinear delay systems, J. Optim. Theory Appl., 151 (2011), 373-384. doi: 10.1007/s10957-011-9905-4. [36] H. Tanabe, Equations of Evolution, Pitman Publishing, London, 1979. [37] C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable, J. Math. Anal. Appl., 56 (1976), 397-409. doi: 10.1016/0022-247X(76)90052-4. [38] C. C. Travis and G. F. Webb, Existence, stability and compactness in the $α-$norm for partial functional differential equations, Trans. Amer. Math. Soc., 240 (1978), 129-143. doi: 10.2307/1998809. [39] L. Wang, Approximate controllability for integrodifferential equations with multiple delays, J. Optim. Theory Appl., 143 (2009), 185-206. doi: 10.1007/s10957-009-9545-0. [40] L. Wang, Approximate controllability results of semilinear integrodifferential equations with infinite delays, Sci. China Ser. F-Inf. Sci., 52 (2009), 1095-1102. doi: 10.1007/s11432-009-0127-4. [41] Z. Yan, Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay, Int. J. Contr., 85 (2012), 1051-1062. doi: 10.1080/00207179.2012.675518. [42] Z. Yan, Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control Inform., 30 (2013), 443-462. doi: 10.1093/imamci/dns033.

show all references

##### References:
 [1] O. Arino, M. Habid and R. Bravo de la Parra, A mathematical model of growth of population of fish in the larval stage: density-dependence effects, Math. Biosc., 150 (1998), 1-20. doi: 10.1016/S0025-5564(98)00008-X. [2] Z. Balanov, Q. Hu and W. Krawcewicz, Global Hopf bifurcation of differential equations with threshold type state-dependent delay, J. Diff. Equ., 257 (2014), 2622-2670. doi: 10.1016/j.jde.2014.05.053. [3] A. E. Bashirov and N. I. Mahmudov, On concepts of controllability for linear deterministic and stochastic systems, SIAM J. Control Optim., 37 (1999), 1808-1821. doi: 10.1137/S036301299732184X. [4] M. Belmekki, M. Benchohra and K. Ezzinbi, Existence results for some partial functional differential equations with state-dependent delay, Appl. Math. Lett., 24 (2011), 1810-1816. doi: 10.1016/j.aml.2011.04.039. [5] R. Curtain and H. J. Zwart, An Introduction to Infinite Dimensional Linear Systems Theory, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4224-6. [6] J. P. Dauer and N. I. Mahmudov, Approximate controllability of semilinear functional equations in Hilbert spaces, J. Math. Anal. Appl., 273 (2002), 310-327. doi: 10.1016/S0022-247X(02)00225-1. [7] W. Fitzgibbon, Semilinear functional differential equations in Banach space, J. Diff. Equ., 29 (1978), 1-14. doi: 10.1016/0022-0396(78)90037-2. [8] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York. 1969. [9] X. Fu and X. Liu, Existence of periodic solutions for abstract neutral non-autonomous equations with infinite delay, J. Math. Anal. Appl., 325 (2007), 249-267. doi: 10.1016/j.jmaa.2006.01.048. [10] X. Fu and K. Mei, Approximate controllability of semilinear partial functional differential systems, J. Dyn. Control Syst., 15 (2009), 425-443. doi: 10.1007/s10883-009-9068-x. [11] X. Fu and J. Zhang, Approximate controllability of neutral functional differential systems with state-dependent delay, Chinese Ann. Math. (B), 37 (2016), 291-308. doi: 10.1007/s11401-016-0934-z. [12] R. K. Georgr, Approximate controllability of non-autonomous semiliear systems, Nonl. Anal. (TMA), 24 (1995), 1377-1393. doi: 10.1016/0362-546X(94)E0082-R. [13] J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial ekvac., 21 (1978), 11-41. [14] E. Hernández and D. O'Regan, $C^α-$Hölder classical solutionss for neutral differential euations, Discr. Cont. Dyn. Syst. (A), 29 (2011), 241-260. [15] E. Hernández, A. Prokopczyk and L. Ladeira, A note on partial functional differential equations with state-dependent delay, Nonl. Anal. (RWA), 7 (2006), 510-519. doi: 10.1016/j.nonrwa.2005.03.014. [16] Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Springer-verlag, Berlin, 1991. doi: 10.1007/BFb0084432. [17] J. Jeong, Y. Kwun and J. Park, Approximate controllability for semilinear retarded functional differential equations, J. Dyn. Contr. Syst., 5 (1999), 329-346. doi: 10.1023/A:1021714500075. [18] J. Jeong and H. Roh, Approximate controllability for semilinear retarded systems, J. Math. Anal. Appl., 321 (2006), 961-975. doi: 10.1016/j.jmaa.2005.09.005. [19] V. Keyantuo and C. Lizama, Hölder continuous solutions for integro-differential equations and maximal regularity, J. Diff. Equ., 230 (2006), 634-660. doi: 10.1016/j.jde.2006.07.018. [20] A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213-1224. doi: 10.1137/0521066. [21] J. M. Mahaffy, J. Belair and M. C. Mackey, Hematopoietic model with moving boundary condition and state dependent delay: Applications in erythropoiesis, J. Theory Bio., 190 (1998), 135-146. [22] N.I. Mahmudov and S. Zorlu, On the approximate controllability of fractional evolution equations with compact analytic semigroup, J. Comp. Appl. Math., 259 (2014), 194-204. doi: 10.1016/j.cam.2013.06.015. [23] F. Z. Mokkedem and X. Fu, Approximate controllability for a semilinear evolut ion system with infinite delay, J. Dyn. Control Sys., 22 (2016), 71-89. doi: 10.1007/s10883-014-9252-5. [24] K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim., 25 (1987), 715-722. doi: 10.1137/0325040. [25] K. Naito, Approximate controllability for trajectories of a delay Voltera control system, J. Optim. Theory Appl., 61 (1989), 271-279. doi: 10.1007/BF00962800. [26] J. W. Nunziato, On heat conduction in materials with memory, Quart. Appl. Math., 29 (1971), 187-204. doi: 10.1090/qam/295683. [27] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1. [28] S. M. Rankin III, Existence and asymptotic behavior of a functional differential equation in Banach space, J. Math. Anal. Appl., 88 (1982), 531-542. doi: 10.1016/0022-247X(82)90211-6. [29] R. Sakthivel and E. R. Ananndhi, Approximate controllability of impulsive differential equations with state-dependent delay, Int. J. control., 83 (2010), 387-393. doi: 10.1080/00207170903171348. [30] R. Sakthivel, R. Ganesh and S. M. Anthoni, Approximate controllability of fractional nonlinear differential inclusions, Appl. Math. Comp., 225 (2013), 708-717. doi: 10.1016/j.amc.2013.09.068. [31] R. Sakthivel and Y. Ren, Approximate controllability of fractional differential equations with state-dependent delay, Results Math., 63 (2013), 949-963. doi: 10.1007/s00025-012-0245-y. [32] R. Sakthivel, S. Suganya and S. M. Anthoni, Approximate controllability of fractional stochastic evolution equations, Comp. Math. Appl., 63 (2012), 660-668. doi: 10.1016/j.camwa.2011.11.024. [33] J. P. C. dos Santos, On state-dependent delay partial neutral functional integro-differential equations, Appl. Math. Comp., 216 (2010), 1637-1644. doi: 10.1016/j.amc.2010.03.019. [34] L. Shen and J. Sun, Approximate controllability of stochastic impulsive functional systems with infinite delay, Automatica, 48 (2012), 2705-2709. doi: 10.1016/j.automatica.2012.06.098. [35] N. Sukavanam and S. Kumar, Approximate controllability of fractional order semilinear delay systems, J. Optim. Theory Appl., 151 (2011), 373-384. doi: 10.1007/s10957-011-9905-4. [36] H. Tanabe, Equations of Evolution, Pitman Publishing, London, 1979. [37] C. C. Travis and G. F. Webb, Partial differential equations with deviating arguments in the time variable, J. Math. Anal. Appl., 56 (1976), 397-409. doi: 10.1016/0022-247X(76)90052-4. [38] C. C. Travis and G. F. Webb, Existence, stability and compactness in the $α-$norm for partial functional differential equations, Trans. Amer. Math. Soc., 240 (1978), 129-143. doi: 10.2307/1998809. [39] L. Wang, Approximate controllability for integrodifferential equations with multiple delays, J. Optim. Theory Appl., 143 (2009), 185-206. doi: 10.1007/s10957-009-9545-0. [40] L. Wang, Approximate controllability results of semilinear integrodifferential equations with infinite delays, Sci. China Ser. F-Inf. Sci., 52 (2009), 1095-1102. doi: 10.1007/s11432-009-0127-4. [41] Z. Yan, Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay, Int. J. Contr., 85 (2012), 1051-1062. doi: 10.1080/00207179.2012.675518. [42] Z. Yan, Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control Inform., 30 (2013), 443-462. doi: 10.1093/imamci/dns033.
 [1] Xiang Li, Zhixiang Li. Kernel sections and (almost) periodic solutions of a non-autonomous parabolic PDE with a discrete state-dependent delay. Communications on Pure & Applied Analysis, 2011, 10 (2) : 687-700. doi: 10.3934/cpaa.2011.10.687 [2] Mahesh G. Nerurkar. Spectral and stability questions concerning evolution of non-autonomous linear systems. Conference Publications, 2001, 2001 (Special) : 270-275. doi: 10.3934/proc.2001.2001.270 [3] Igor Chueshov, Peter E. Kloeden, Meihua Yang. Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 991-1009. doi: 10.3934/dcdsb.2018139 [4] István Györi, Ferenc Hartung. Exponential stability of a state-dependent delay system. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 773-791. doi: 10.3934/dcds.2007.18.773 [5] Jinrong Wang, Michal Fečkan, Yong Zhou. Approximate controllability of Sobolev type fractional evolution systems with nonlocal conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 471-486. doi: 10.3934/eect.2017024 [6] Mustapha Mokhtar-Kharroubi. On permanent regimes for non-autonomous linear evolution equations in Banach spaces with applications to transport theory. Kinetic & Related Models, 2010, 3 (3) : 473-499. doi: 10.3934/krm.2010.3.473 [7] Peter E. Kloeden, Jacson Simsen. Pullback attractors for non-autonomous evolution equations with spatially variable exponents. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2543-2557. doi: 10.3934/cpaa.2014.13.2543 [8] Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17 [9] A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701 [10] Matthias Büger, Marcus R.W. Martin. Stabilizing control for an unbounded state-dependent delay equation. Conference Publications, 2001, 2001 (Special) : 56-65. doi: 10.3934/proc.2001.2001.56 [11] Hans-Otto Walther. On Poisson's state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 365-379. doi: 10.3934/dcds.2013.33.365 [12] Tôn Việt Tạ. Non-autonomous stochastic evolution equations in Banach spaces of martingale type 2: Strict solutions and maximal regularity. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4507-4542. doi: 10.3934/dcds.2017193 [13] Yong Zhou, V. Vijayakumar, R. Murugesu. Controllability for fractional evolution inclusions without compactness. Evolution Equations & Control Theory, 2015, 4 (4) : 507-524. doi: 10.3934/eect.2015.4.507 [14] Guo Lin, Haiyan Wang. Traveling wave solutions of a reaction-diffusion equation with state-dependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319-334. doi: 10.3934/cpaa.2016.15.319 [15] Benjamin B. Kennedy. A state-dependent delay equation with negative feedback and "mildly unstable" rapidly oscillating periodic solutions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1633-1650. doi: 10.3934/dcdsb.2013.18.1633 [16] Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007 [17] Luisa Arlotti, Bertrand Lods, Mustapha Mokhtar-Kharroubi. Non-autonomous Honesty theory in abstract state spaces with applications to linear kinetic equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 729-771. doi: 10.3934/cpaa.2014.13.729 [18] Felipe Rivero. Time dependent perturbation in a non-autonomous non-classical parabolic equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 209-221. doi: 10.3934/dcdsb.2013.18.209 [19] Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 [20] Benjamin B. Kennedy. Multiple periodic solutions of state-dependent threshold delay equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1801-1833. doi: 10.3934/dcds.2012.32.1801

2016 Impact Factor: 0.826