# American Institute of Mathematical Sciences

2018, 23(2): 557-571. doi: 10.3934/dcdsb.2017208

## On a distributed control problem for a coupled chemotaxis-fluid model

 1 Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas and IMUS, Universidad de Sevilla, C/Tarfia, S/N, 41012 Sevilla, Spain 2 Universidad Industrial de Santander, Escuela de Matemáticas, Bucaramanga, A.A. 678, Colombia

* Corresponding author: M. Ángeles Rodríguez-Bellido

Received  February 2017 Revised  June 2017 Published  December 2017

Fund Project: The first author has been partially supported by MINECO grants MTM2012-32325 and MTM2015-69875-P (Ministerio de Economía y Competitividad, Spain) with the participation of FEDER. The second and third authors have been supported by Vicerrectoría de Investigación y Extensión of Universidad Industrial de Santander, and Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación Francisco José de Caldas, contrato Colciencias FP 44842- 157-2016.

In this paper we analyze an optimal distributed control problem where the state equations are given by a stationary chemotaxis model coupled with the Navier-Stokes equations. We consider that the movement and the interaction of cells are occurring in a smooth bounded domain of $\mathbb{R}^n,n = 2,3,$ subject to homogeneous boundary conditions. We control the system through a distributed force and a coefficient of chemotactic sensitivity, leading the chemical concentration, the cell density, and the velocity field towards a given target concentration, density and velocity, respectively. In addition to the existence of optimal solution, we derive some optimality conditions.

Citation: M. Ángeles Rodríguez-Bellido, Diego A. Rueda-Gómez, Élder J. Villamizar-Roa. On a distributed control problem for a coupled chemotaxis-fluid model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 557-571. doi: 10.3934/dcdsb.2017208
##### References:
 [1] F. Abergel and E. Casas, Some optimal control problems of multistate equations appearing in fluid mechanics, RAIRO Modél. Math. Anal. Numér., 27 (1993), 223-247. doi: 10.1051/m2an/1993270202231. [2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ., Commun. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405. [3] N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of KellerSegel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. [4] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340. [5] M. A. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15 (2005), 1685-1734. doi: 10.1142/S0218202505000947. [6] M. A. Chaplain and A. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, IMA J. Math. Appl. Med. Biol., 10 (1993), 149-168. [7] F. W. Chaves-Silva and S. Guerrero, A uniform controllability result for the Keller-Segel system, Asymptot. Anal., 92 (2015), 313-338. doi: 10.3233/ASY-141282. [8] F. W. Chaves-Silva and S. Guerrero, A controllability result for a chemotaxis-fluid model, J. Differential Equations, 262 (2017), 4863-4905. doi: 10.1016/j.jde.2017.01.004. [9] M. del Pino and J. Wei, Collapsing steady states of the Keller-Segel system, Nonlinearity, 19 (2006), 661-684. doi: 10.1088/0951-7715/19/3/007. [10] E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics, Birkäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8843-0. [11] M. Di Francesco, A. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., 28 (2010), 1437-1453. doi: 10.3934/dcds.2010.28.1437. [12] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 2001. doi: 10.1007/978-3-642-61798-0. [13] M. Gunzburger, L. Hou and T. Svobodny, Boundary velocity control of incompressible flow with an application to viscous drag reduction, SIAM J. Control Optim., 30 (1992), 167-181. doi: 10.1137/0330011. [14] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3. [15] A. A. Illarionov, Optimal boundary control of the steady flow of a viscous nonhomogeneous incompressible fluid, Math. Notes, 69 (2001), 614–624 (Translated from Mat. Zametki, 69 (2001), 666–678). doi: 10.1023/A:1010297424324. [16] J. Jiang and Y. Y. Zhang, On convergence to equilibria for a chemotaxis model with volumefilling effect, Asymptot. Anal., 65 (2009), 79-102. doi: 10.3233/ASY-2009-0948. [17] Y. Kabeya and W. Ni, Stationary Keller-Segel model with the linear sensitivity, Surikaisekikenkyusho Kokyuroku, (1998), 44-65. [18] E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. [19] E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6. [20] P. Laurençot and D. Wrzosek, A chemotaxis model with threshold density and degenerate diffusion, Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., 64 (2005), 273-290. doi: 10.1007/3-7643-7385-7_16. [21] H.-C. Lee and O. Y. Imanuvilov, Analysis of Newmann boundary optimal control problems for the stationary Boussinesq equations including solid media, SIAM J. Control Optim., 39 (2000), 457-477. doi: 10.1137/S0363012998347110. [22] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a Chemotaxis system, J. Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7. [23] J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: global existence, Ann. Inst. H. Poincaré. Anal. Non Linéare, 28 (2011), 643-652. doi: 10.1016/j.anihpc.2011.04.005. [24] E. Mallea-Zepeda, E. Ortega-Torres and E. J. Villamizar-Roa, A boundary control problem for micropolar fluids, J. Optim. Theory Appl., 169 (2016), 349-369. doi: 10.1007/s10957-016-0925-y. [25] N. V. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumor-induced angiogenesis, J. Math. Biol., 49 (2004), 111-187. doi: 10.1007/s00285-003-0262-2. [26] M. Musso and J. Wei, Stationary solutions to Keller-Segel chemotaxis system, Asymptot. Anal., 49 (2006), 217-247. [27] A. Pistoia and G. Vaira, Steady states with unbounded mass of the Keller-Segel system, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 203-222. doi: 10.1017/S0308210513000619. [28] A. Potapov and T. Hillen, Metastability in chemotaxis models, J. Dynam. Differential Equations, 17 (2005), 293-330. doi: 10.1007/s10884-005-2938-3. [29] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967. [30] R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc., 292 (1985), 531-556. doi: 10.1090/S0002-9947-1985-0808736-1. [31] Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., 32 (2012), 1901-1914. doi: 10.3934/dcds.2012.32.1901. [32] M. J. Tindall, P. K. Maini, S. L. Porter and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis Ⅱ: Bacterial populations, Bulletin of Mathematical Biology, 70 (2008), 1570-1607. doi: 10.1007/s11538-008-9322-5. [33] R. Tyson, S. Lubkin and J. D. Murray, Model and analysis of chemotactic bacterial patterns in a liquid medium, J. Math. Biol., 38 (1999), 359-375. doi: 10.1007/s002850050153. [34] M. Winkler, Global large-data solutions in a Chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351. doi: 10.1080/03605302.2011.591865. [35] D. Woodward, R. Tyson, M. Myerscough, J. D. Murray, E. Budrene and H. Berg, Spatiotemporal patterns generated by salmonella typhimurium, Biophysical Journal, 68 (1995), 2181-2189. doi: 10.1016/S0006-3495(95)80400-5. [36] X. Ye, Existence and decay of global smooth solutions to the coupled chemotaxis-fluid model, J. Math. Anal. Appl., 427 (2015), 60-73. doi: 10.1016/j.jmaa.2015.02.023.

show all references

##### References:
 [1] F. Abergel and E. Casas, Some optimal control problems of multistate equations appearing in fluid mechanics, RAIRO Modél. Math. Anal. Numér., 27 (1993), 223-247. doi: 10.1051/m2an/1993270202231. [2] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Ⅰ., Commun. Pure Appl. Math., 12 (1959), 623-727. doi: 10.1002/cpa.3160120405. [3] N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of KellerSegel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. [4] L. Cattabriga, Su un problema al contorno relativo al sistema di equazioni di Stokes, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340. [5] M. A. Chaplain and G. Lolas, Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15 (2005), 1685-1734. doi: 10.1142/S0218202505000947. [6] M. A. Chaplain and A. Stuart, A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor, IMA J. Math. Appl. Med. Biol., 10 (1993), 149-168. [7] F. W. Chaves-Silva and S. Guerrero, A uniform controllability result for the Keller-Segel system, Asymptot. Anal., 92 (2015), 313-338. doi: 10.3233/ASY-141282. [8] F. W. Chaves-Silva and S. Guerrero, A controllability result for a chemotaxis-fluid model, J. Differential Equations, 262 (2017), 4863-4905. doi: 10.1016/j.jde.2017.01.004. [9] M. del Pino and J. Wei, Collapsing steady states of the Keller-Segel system, Nonlinearity, 19 (2006), 661-684. doi: 10.1088/0951-7715/19/3/007. [10] E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids, Advances in Mathematical Fluid Mechanics, Birkäuser Verlag, Basel, 2009. doi: 10.1007/978-3-7643-8843-0. [11] M. Di Francesco, A. Lorz and P. Markowich, Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., 28 (2010), 1437-1453. doi: 10.3934/dcds.2010.28.1437. [12] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 2001. doi: 10.1007/978-3-642-61798-0. [13] M. Gunzburger, L. Hou and T. Svobodny, Boundary velocity control of incompressible flow with an application to viscous drag reduction, SIAM J. Control Optim., 30 (1992), 167-181. doi: 10.1137/0330011. [14] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3. [15] A. A. Illarionov, Optimal boundary control of the steady flow of a viscous nonhomogeneous incompressible fluid, Math. Notes, 69 (2001), 614–624 (Translated from Mat. Zametki, 69 (2001), 666–678). doi: 10.1023/A:1010297424324. [16] J. Jiang and Y. Y. Zhang, On convergence to equilibria for a chemotaxis model with volumefilling effect, Asymptot. Anal., 65 (2009), 79-102. doi: 10.3233/ASY-2009-0948. [17] Y. Kabeya and W. Ni, Stationary Keller-Segel model with the linear sensitivity, Surikaisekikenkyusho Kokyuroku, (1998), 44-65. [18] E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. [19] E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6. [20] P. Laurençot and D. Wrzosek, A chemotaxis model with threshold density and degenerate diffusion, Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., 64 (2005), 273-290. doi: 10.1007/3-7643-7385-7_16. [21] H.-C. Lee and O. Y. Imanuvilov, Analysis of Newmann boundary optimal control problems for the stationary Boussinesq equations including solid media, SIAM J. Control Optim., 39 (2000), 457-477. doi: 10.1137/S0363012998347110. [22] C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a Chemotaxis system, J. Differential Equations, 72 (1988), 1-27. doi: 10.1016/0022-0396(88)90147-7. [23] J.-G. Liu and A. Lorz, A coupled chemotaxis-fluid model: global existence, Ann. Inst. H. Poincaré. Anal. Non Linéare, 28 (2011), 643-652. doi: 10.1016/j.anihpc.2011.04.005. [24] E. Mallea-Zepeda, E. Ortega-Torres and E. J. Villamizar-Roa, A boundary control problem for micropolar fluids, J. Optim. Theory Appl., 169 (2016), 349-369. doi: 10.1007/s10957-016-0925-y. [25] N. V. Mantzaris, S. Webb and H. G. Othmer, Mathematical modeling of tumor-induced angiogenesis, J. Math. Biol., 49 (2004), 111-187. doi: 10.1007/s00285-003-0262-2. [26] M. Musso and J. Wei, Stationary solutions to Keller-Segel chemotaxis system, Asymptot. Anal., 49 (2006), 217-247. [27] A. Pistoia and G. Vaira, Steady states with unbounded mass of the Keller-Segel system, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 203-222. doi: 10.1017/S0308210513000619. [28] A. Potapov and T. Hillen, Metastability in chemotaxis models, J. Dynam. Differential Equations, 17 (2005), 293-330. doi: 10.1007/s10884-005-2938-3. [29] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1967. [30] R. Schaaf, Stationary solutions of chemotaxis systems, Trans. Amer. Math. Soc., 292 (1985), 531-556. doi: 10.1090/S0002-9947-1985-0808736-1. [31] Y. Tao and M. Winkler, Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst., 32 (2012), 1901-1914. doi: 10.3934/dcds.2012.32.1901. [32] M. J. Tindall, P. K. Maini, S. L. Porter and J. P. Armitage, Overview of mathematical approaches used to model bacterial chemotaxis Ⅱ: Bacterial populations, Bulletin of Mathematical Biology, 70 (2008), 1570-1607. doi: 10.1007/s11538-008-9322-5. [33] R. Tyson, S. Lubkin and J. D. Murray, Model and analysis of chemotactic bacterial patterns in a liquid medium, J. Math. Biol., 38 (1999), 359-375. doi: 10.1007/s002850050153. [34] M. Winkler, Global large-data solutions in a Chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37 (2012), 319-351. doi: 10.1080/03605302.2011.591865. [35] D. Woodward, R. Tyson, M. Myerscough, J. D. Murray, E. Budrene and H. Berg, Spatiotemporal patterns generated by salmonella typhimurium, Biophysical Journal, 68 (1995), 2181-2189. doi: 10.1016/S0006-3495(95)80400-5. [36] X. Ye, Existence and decay of global smooth solutions to the coupled chemotaxis-fluid model, J. Math. Anal. Appl., 427 (2015), 60-73. doi: 10.1016/j.jmaa.2015.02.023.
 [1] Tian Xiang. On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4911-4946. doi: 10.3934/dcds.2014.34.4911 [2] Jacob Bedrossian, Nancy Rodríguez. Inhomogeneous Patlak-Keller-Segel models and aggregation equations with nonlinear diffusion in $\mathbb{R}^d$. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1279-1309. doi: 10.3934/dcdsb.2014.19.1279 [3] Hi Jun Choe, Bataa Lkhagvasuren, Minsuk Yang. Wellposedness of the Keller-Segel Navier-Stokes equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2453-2464. doi: 10.3934/cpaa.2015.14.2453 [4] Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046 [5] Enrique Fernández-Cara. Motivation, analysis and control of the variable density Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1021-1090. doi: 10.3934/dcdss.2012.5.1021 [6] Pavel I. Plotnikov, Jan Sokolowski. Compressible Navier-Stokes equations. Conference Publications, 2009, 2009 (Special) : 602-611. doi: 10.3934/proc.2009.2009.602 [7] Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2017149 [8] José Antonio Carrillo, Stefano Lisini, Edoardo Mainini. Uniqueness for Keller-Segel-type chemotaxis models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1319-1338. doi: 10.3934/dcds.2014.34.1319 [9] Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777 [10] Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495 [11] Hyukjin Kwean. Kwak transformation and Navier-Stokes equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 433-446. doi: 10.3934/cpaa.2004.3.433 [12] Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747 [13] C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 [14] Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319 [15] Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717 [16] Susan Friedlander, Nataša Pavlović. Remarks concerning modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 269-288. doi: 10.3934/dcds.2004.10.269 [17] Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349 [18] Youshan Tao, Michael Winkler. Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1901-1914. doi: 10.3934/dcds.2012.32.1901 [19] Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 [20] Shuguang Shao, Shu Wang, Wen-Qing Xu. Global regularity for a model of Navier-Stokes equations with logarithmic sub-dissipation. Kinetic & Related Models, 2018, 11 (1) : 179-190. doi: 10.3934/krm.2018009

2016 Impact Factor: 0.994