• Previous Article
    Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems
  • JIMO Home
  • This Issue
  • Next Article
    Solutions for bargaining games with incomplete information: General type space and action space
July 2018, 14(3): 931-951. doi: 10.3934/jimo.2017083

Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts

1. 

School of business administration, Zhongnan university of economics and law, 182 Nanhu Avenue, East Lake High-tech Development Zone, Wuhan 430073, China

2. 

OASIS -ENIT, University of Tunis El Manar, BP 37, LE BELVEDERE 1002 TUNIS, Tunisia

3. 

LGI, Centrale Supelec, Paris Saclay University, Grande Voie des Vignes, 92295 CHATNAY-MALABRY CEDEX, France

* Corresponding author: Shouyu Ma

Received  March 2016 Revised  August 2017 Published  September 2017

Fund Project: The first author is supported by the China Scholarship Council

Existing papers on the Newsboy Problem that deal with price dependent demand and multiple discounts often analyze those two problems separately. This paper considers a setting where price dependence and multiple discounts are observed simultaneously, as is the case of the apparel industry. Henceforth, we analyze the optimal order quantity, initial selling price and discount scheme in the News-Vendor Problem context. The term of discount scheme is often used to specify the number of discounts as well as the discount percentages. We present a solution procedure of the problem with general demand distributions and two types of price-dependent demand: additive case and multiplicative case. We provide interesting insights based on a numerical study. An approximation method is proposed which confirms our numerical results.

Citation: Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial & Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083
References:
[1]

F. J. ArcelusS. Kumar and G. Srinivasan, Channel coordination with manufacturer's return policies within a newsvendor framework, 4OR, 9 (2011), 279-297. doi: 10.1007/s10288-011-0160-1.

[2]

F. Y. ChenH. Yan and L. Yao, A newsvendor pricing game, IEEE Transactions on Systems, Man, and Cybernetics, 34 (2004), 450-456. doi: 10.1109/TSMCA.2004.826290.

[3]

W. ChungS. Talluri and R. Narasimhan, Optimal pricing and inventory strategies with multiple price markdowns over time, European Journal of Operational Research, 243 (2014), 130-141. doi: 10.1016/j.ejor.2014.11.020.

[4]

G. Gallego and I. Moon, The distribution free newsboy problem: review and extensions, The Journal of the Operational Research Society, 44 (1993), 825-834.

[5]

S. Karlin and C. R. Carr, Prices and Optimal Inventory Policy Studies in Applied Probability and Management Science. Stanford University Press, 1962.

[6]

M. Khouja, The newsboy problem under progressive multiple discounts, European Journal of Operational Research, 84 (1995), 458-466. doi: 10.1016/0377-2217(94)00053-F.

[7]

M. Khouja, The newsboy problem with progressive retailer discounts and supplier quantity discounts, Decision Sciences, 27 (1996), 589-599.

[8]

M. Khouja, Optimal ordering, discounting, and pricing in the single-period problem, International Jounal of Production Economics, 65 (2000), 201-216. doi: 10.1016/S0925-5273(99)00027-4.

[9]

M. Khouja and A. Mehrez, A multi-product constrained newsboy problem with progressive multiple discounts, Computers and Industrial Engineering, 30 (1996), 95-101. doi: 10.1016/0360-8352(95)00025-9.

[10]

A. Lau and H. Lau, The newsboy problem with price-dependent demand distribution, IIE Transactions, 20 (1998), 168-175. doi: 10.1080/07408178808966166.

[11]

E. S. Mills, Uncertainty and price theory, the Quarterly Journal of Economics, 73 (1959), 116-130. doi: 10.2307/1883828.

[12]

L. H. Polatoglu, Optimal order quantity and pricing decisions in single-period inventory systems, International Journal of Production Economics, 23 (1991), 175-185. doi: 10.1016/0925-5273(91)90060-7.

[13]

Y. QinR. WangA.J. VakhariaY. Chen and M.M. H. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374. doi: 10.1016/j.ejor.2010.11.024.

[14]

S.A. Raza, A distribution free approach to newsvendor problem with pricing, 4OR, 12 (2014), 335-358. doi: 10.1007/s10288-013-0249-9.

[15]

S.S. Sana, Price sensitive demand with random sales price-a newsboy problem, International Journal of Systems Science, 43 (2012), 491-498. doi: 10.1080/00207721.2010.517856.

[16]

K.-H. Wang and C.-T. Tung, Construction of a model towards {EOQ} and pricing strategy for gradually obsolescent products, Applied Mathematics and Computation, 217 (2011), 6926-6933. doi: 10.1016/j.amc.2011.01.100.

[17]

L. R. Weatherford and P. E. Pfeifer, The economic value of using advance booking of orders, Omega, 22 (1994), 105-111. doi: 10.1016/0305-0483(94)90011-6.

[18]

H. Yu and J. Zhai, The distribution-free newsvendor problem with balking and penalties for balking and stockout, Journal of Systems Science and Systems Engineering, 23 (2014), 153-175. doi: 10.1007/s11518-014-5246-9.

[19]

Y. ZhangX. Yang and B. Li, Distribution-free solutions to the extended multi-period newsboy problem, Journal of Industrial and Management Optimization, 13 (2017), 633-647. doi: 10.3934/jimo.2016037.

show all references

References:
[1]

F. J. ArcelusS. Kumar and G. Srinivasan, Channel coordination with manufacturer's return policies within a newsvendor framework, 4OR, 9 (2011), 279-297. doi: 10.1007/s10288-011-0160-1.

[2]

F. Y. ChenH. Yan and L. Yao, A newsvendor pricing game, IEEE Transactions on Systems, Man, and Cybernetics, 34 (2004), 450-456. doi: 10.1109/TSMCA.2004.826290.

[3]

W. ChungS. Talluri and R. Narasimhan, Optimal pricing and inventory strategies with multiple price markdowns over time, European Journal of Operational Research, 243 (2014), 130-141. doi: 10.1016/j.ejor.2014.11.020.

[4]

G. Gallego and I. Moon, The distribution free newsboy problem: review and extensions, The Journal of the Operational Research Society, 44 (1993), 825-834.

[5]

S. Karlin and C. R. Carr, Prices and Optimal Inventory Policy Studies in Applied Probability and Management Science. Stanford University Press, 1962.

[6]

M. Khouja, The newsboy problem under progressive multiple discounts, European Journal of Operational Research, 84 (1995), 458-466. doi: 10.1016/0377-2217(94)00053-F.

[7]

M. Khouja, The newsboy problem with progressive retailer discounts and supplier quantity discounts, Decision Sciences, 27 (1996), 589-599.

[8]

M. Khouja, Optimal ordering, discounting, and pricing in the single-period problem, International Jounal of Production Economics, 65 (2000), 201-216. doi: 10.1016/S0925-5273(99)00027-4.

[9]

M. Khouja and A. Mehrez, A multi-product constrained newsboy problem with progressive multiple discounts, Computers and Industrial Engineering, 30 (1996), 95-101. doi: 10.1016/0360-8352(95)00025-9.

[10]

A. Lau and H. Lau, The newsboy problem with price-dependent demand distribution, IIE Transactions, 20 (1998), 168-175. doi: 10.1080/07408178808966166.

[11]

E. S. Mills, Uncertainty and price theory, the Quarterly Journal of Economics, 73 (1959), 116-130. doi: 10.2307/1883828.

[12]

L. H. Polatoglu, Optimal order quantity and pricing decisions in single-period inventory systems, International Journal of Production Economics, 23 (1991), 175-185. doi: 10.1016/0925-5273(91)90060-7.

[13]

Y. QinR. WangA.J. VakhariaY. Chen and M.M. H. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374. doi: 10.1016/j.ejor.2010.11.024.

[14]

S.A. Raza, A distribution free approach to newsvendor problem with pricing, 4OR, 12 (2014), 335-358. doi: 10.1007/s10288-013-0249-9.

[15]

S.S. Sana, Price sensitive demand with random sales price-a newsboy problem, International Journal of Systems Science, 43 (2012), 491-498. doi: 10.1080/00207721.2010.517856.

[16]

K.-H. Wang and C.-T. Tung, Construction of a model towards {EOQ} and pricing strategy for gradually obsolescent products, Applied Mathematics and Computation, 217 (2011), 6926-6933. doi: 10.1016/j.amc.2011.01.100.

[17]

L. R. Weatherford and P. E. Pfeifer, The economic value of using advance booking of orders, Omega, 22 (1994), 105-111. doi: 10.1016/0305-0483(94)90011-6.

[18]

H. Yu and J. Zhai, The distribution-free newsvendor problem with balking and penalties for balking and stockout, Journal of Systems Science and Systems Engineering, 23 (2014), 153-175. doi: 10.1007/s11518-014-5246-9.

[19]

Y. ZhangX. Yang and B. Li, Distribution-free solutions to the extended multi-period newsboy problem, Journal of Industrial and Management Optimization, 13 (2017), 633-647. doi: 10.3934/jimo.2016037.

Figure 1.  sequence of events for a selling season
Figure 2.  Expected profit $E(\pi(Q^{*}))$, as a function of the discount number, for normally distributed demand
Figure 3.  Expected profit $E(\pi(Q^{*}))$, as a function of the intial price
Figure 4.  discount schemes
Figure 5.  The value of ($E(\pi(Q^{*}))-E_\sigma$), as a function of discount number, with normal distribution
Figure 6.  The value of ($E(\pi(Q^{*}))-E_\sigma$), as a function of discount number, with uniform distribution
Figure 7.  Expected profit as function of discount number n
Figure 8.  Discount percentages at $v_0=6$ for different schemes
Figure 9.  Expected profit as function of initial price
Table 1.  Comparison with the work of Khouja(1995, 2000)
parameterprice-demand relation demand distribution discount prices
[6] fixed general known
[8] additive uniform and normal linear
our paper additive and multiplicative general all types
parameterprice-demand relation demand distribution discount prices
[6] fixed general known
[8] additive uniform and normal linear
our paper additive and multiplicative general all types
Table 2.  The optimal order initial price, order quantity and expected profit for different combinations of n, b, $\sigma_0$ for normally distributed demand
test n b $\sigma_0$ $v^*_{0}$ $Q^*$ $E(\pi(Q^*, v_0^*))$
1 4 6 2 10.20 55.8 249.0
2 4 6 4 10.18 55.9 246.9
3 4 6 6 10.24 56.1 245.0
4 4 6 8 10.23 56.9 243.4
5 4 8 2 8.54 50.4 153.3
6 4 8 4 8.58 49.8 151.6
7 4 8 6 8.59 49.6 150.2
8 4 8 8 8.57 50.0 148.6
9 4 10 2 6.60 46.3 95.0
10 4 10 4 6.64 44.5 94.3
11 4 10 6 6.64 44.3 93.6
12 4 10 8 6.61 44.6 92.2
13 5 6 2 11.41 56.6 263.9
14 5 6 4 11.51 56.4 262.0
15 5 6 6 11.47 56.7 260.2
16 5 6 8 11.54 57.4 258.2
17 5 8 2 8.81 51.9 159.8
18 5 8 4 8.71 50.9 158.6
19 5 8 6 8.75 50.8 157.4
20 5 8 8 8.81 51.2 155.8
21 5 10 2 7.09 45.7 100.1
22 5 10 4 7.06 45.0 99.8
23 5 10 6 7.01 45.1 98.8
24 5 10 8 7.09 45.3 97.6
25 6 6 2 11.90 57.6 271.5
26 6 6 4 11.90 57.2 270.0
27 6 6 6 11.88 57.5 268.3
28 6 6 8 12.0 58.2 266.3
29 6 8 2 8.91 52.6 164.5
30 6 8 4 8.91 51.5 163.7
31 6 8 6 8.94 51.6 162.6
32 6 8 8 8.91 52.1 161.0
33 6 10 2 7.16 44.8 103.8
34 6 10 4 7.18 45.7 103.3
35 6 10 6 7.19 45.8 102.3
36 6 10 8 7.18 46.1 100.0
test n b $\sigma_0$ $v^*_{0}$ $Q^*$ $E(\pi(Q^*, v_0^*))$
1 4 6 2 10.20 55.8 249.0
2 4 6 4 10.18 55.9 246.9
3 4 6 6 10.24 56.1 245.0
4 4 6 8 10.23 56.9 243.4
5 4 8 2 8.54 50.4 153.3
6 4 8 4 8.58 49.8 151.6
7 4 8 6 8.59 49.6 150.2
8 4 8 8 8.57 50.0 148.6
9 4 10 2 6.60 46.3 95.0
10 4 10 4 6.64 44.5 94.3
11 4 10 6 6.64 44.3 93.6
12 4 10 8 6.61 44.6 92.2
13 5 6 2 11.41 56.6 263.9
14 5 6 4 11.51 56.4 262.0
15 5 6 6 11.47 56.7 260.2
16 5 6 8 11.54 57.4 258.2
17 5 8 2 8.81 51.9 159.8
18 5 8 4 8.71 50.9 158.6
19 5 8 6 8.75 50.8 157.4
20 5 8 8 8.81 51.2 155.8
21 5 10 2 7.09 45.7 100.1
22 5 10 4 7.06 45.0 99.8
23 5 10 6 7.01 45.1 98.8
24 5 10 8 7.09 45.3 97.6
25 6 6 2 11.90 57.6 271.5
26 6 6 4 11.90 57.2 270.0
27 6 6 6 11.88 57.5 268.3
28 6 6 8 12.0 58.2 266.3
29 6 8 2 8.91 52.6 164.5
30 6 8 4 8.91 51.5 163.7
31 6 8 6 8.94 51.6 162.6
32 6 8 8 8.91 52.1 161.0
33 6 10 2 7.16 44.8 103.8
34 6 10 4 7.18 45.7 103.3
35 6 10 6 7.19 45.8 102.3
36 6 10 8 7.18 46.1 100.0
Table 3.  Optimal epected profit for different discount schemes
scheme coe optimal expected profit
linear 0 158.5
1 -0.03 144.9
2 -0.02 151.1
3 -0.01 155.8
4 0.01 159.1
5 0.02 157.8
6 0.03 153.4
scheme coe optimal expected profit
linear 0 158.5
1 -0.03 144.9
2 -0.02 151.1
3 -0.01 155.8
4 0.01 159.1
5 0.02 157.8
6 0.03 153.4
Table 4.  Expected profit function for uniform and normal distributions
Distribution $U[\mu_0-\sigma_0, \mu_0+\sigma_0]$ $N(\mu_0, \sigma_0)$
Condition for $\epsilon=0$ $\forall j, \sigma_0\leq \frac{\mu_{j}-\mu_{j-1}}{2}$ $\forall j, \sigma_0\leq \frac{\mu_{j}-\mu_{j-1}}{4}$
$E(\pi(Q^*))$ $E_\sigma+E_v$ $E_\sigma+E_v$
$E(\pi(Q^*))$ for linear case equation 4.11 equation 4.11
$E_v$ equation 4.8 equation 4.8
$E_\sigma$ equation 4.9 equation 4.10
Distribution $U[\mu_0-\sigma_0, \mu_0+\sigma_0]$ $N(\mu_0, \sigma_0)$
Condition for $\epsilon=0$ $\forall j, \sigma_0\leq \frac{\mu_{j}-\mu_{j-1}}{2}$ $\forall j, \sigma_0\leq \frac{\mu_{j}-\mu_{j-1}}{4}$
$E(\pi(Q^*))$ $E_\sigma+E_v$ $E_\sigma+E_v$
$E(\pi(Q^*))$ for linear case equation 4.11 equation 4.11
$E_v$ equation 4.8 equation 4.8
$E_\sigma$ equation 4.9 equation 4.10
Table 5.  Expected profit function for uniform and normal distributions
Distribution $U[\mu_0-\sigma_0, \mu_0+\sigma_0]$ $N(\mu_0, \sigma_0)$
Condition that $\epsilon=0$ $\forall j, \sigma_0\leq\frac{\mu_{j}-\mu_{j-1}}{2}$ $\forall j, \sigma_0\leq\frac{\mu_{j}-\mu_{j-1}}{4}$
$E(\pi(Q^*))$ $E_\sigma+E_v$ $E_\sigma+E_v$
Exponential case equation 5.8 equation 5.8
$E_v$ equation 5.5 equation 5.5
$E_\sigma$ equation 5.6 equation 5.7
Distribution $U[\mu_0-\sigma_0, \mu_0+\sigma_0]$ $N(\mu_0, \sigma_0)$
Condition that $\epsilon=0$ $\forall j, \sigma_0\leq\frac{\mu_{j}-\mu_{j-1}}{2}$ $\forall j, \sigma_0\leq\frac{\mu_{j}-\mu_{j-1}}{4}$
$E(\pi(Q^*))$ $E_\sigma+E_v$ $E_\sigma+E_v$
Exponential case equation 5.8 equation 5.8
$E_v$ equation 5.5 equation 5.5
$E_\sigma$ equation 5.6 equation 5.7
[1]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-29. doi: 10.3934/jimo.2018098

[2]

Chih-Te Yang, Liang-Yuh Ouyang, Hsiu-Feng Yen, Kuo-Liang Lee. Joint pricing and ordering policies for deteriorating item with retail price-dependent demand in response to announced supply price increase. Journal of Industrial & Management Optimization, 2013, 9 (2) : 437-454. doi: 10.3934/jimo.2013.9.437

[3]

Jia Shu, Zhengyi Li, Weijun Zhong. A market selection and inventory ordering problem under demand uncertainty. Journal of Industrial & Management Optimization, 2011, 7 (2) : 425-434. doi: 10.3934/jimo.2011.7.425

[4]

Nurhadi Siswanto, Stefanus Eko Wiratno, Ahmad Rusdiansyah, Ruhul Sarker. Maritime inventory routing problem with multiple time windows. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-27. doi: 10.3934/jimo.2018091

[5]

Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 21-50. doi: 10.3934/naco.2017002

[6]

Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial & Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933

[7]

Tien-Yu Lin, Ming-Te Chen, Kuo-Lung Hou. An inventory model for items with imperfect quality and quantity discounts under adjusted screening rate and earned interest. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1333-1347. doi: 10.3934/jimo.2016.12.1333

[8]

Ábel Garab, Veronika Kovács, Tibor Krisztin. Global stability of a price model with multiple delays. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6855-6871. doi: 10.3934/dcds.2016098

[9]

Yong Zhang, Xingyu Yang, Baixun Li. Distribution-free solutions to the extended multi-period newsboy problem. Journal of Industrial & Management Optimization, 2017, 13 (2) : 633-647. doi: 10.3934/jimo.2016037

[10]

Miriam Kiessling, Sascha Kurz, Jörg Rambau. The integrated size and price optimization problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 669-693. doi: 10.3934/naco.2012.2.669

[11]

M. M. Ali, L. Masinga. A nonlinear optimization model for optimal order quantities with stochastic demand rate and price change. Journal of Industrial & Management Optimization, 2007, 3 (1) : 139-154. doi: 10.3934/jimo.2007.3.139

[12]

Po-Chung Yang, Hui-Ming Wee, Shen-Lian Chung, Yong-Yan Huang. Pricing and replenishment strategy for a multi-market deteriorating product with time-varying and price-sensitive demand. Journal of Industrial & Management Optimization, 2013, 9 (4) : 769-787. doi: 10.3934/jimo.2013.9.769

[13]

Bibhas C. Giri, Bhaba R. Sarker. Coordinating a multi-echelon supply chain under production disruption and price-sensitive stochastic demand. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2018115

[14]

Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091

[15]

Wei Liu, Shiji Song, Cheng Wu. Single-period inventory model with discrete stochastic demand based on prospect theory. Journal of Industrial & Management Optimization, 2012, 8 (3) : 577-590. doi: 10.3934/jimo.2012.8.577

[16]

Konstantina Skouri, Ioannis Konstantaras. Two-warehouse inventory models for deteriorating products with ramp type demand rate. Journal of Industrial & Management Optimization, 2013, 9 (4) : 855-883. doi: 10.3934/jimo.2013.9.855

[17]

Yanyi Xu, Arnab Bisi, Maqbool Dada. New structural properties of inventory models with Polya frequency distributed demand and fixed setup cost. Journal of Industrial & Management Optimization, 2017, 13 (2) : 931-945. doi: 10.3934/jimo.2016054

[18]

Lizhao Yan, Fei Xu, Yongzeng Lai, Mingyong Lai. Stability strategies of manufacturing-inventory systems with unknown time-varying demand. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2033-2047. doi: 10.3934/jimo.2017030

[19]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Ergodic control for a mean reverting inventory model. Journal of Industrial & Management Optimization, 2018, 14 (3) : 857-876. doi: 10.3934/jimo.2017079

[20]

Eungab Kim. On the admission control and demand management in a two-station tandem production system. Journal of Industrial & Management Optimization, 2011, 7 (1) : 1-18. doi: 10.3934/jimo.2011.7.1

2017 Impact Factor: 0.994

Metrics

  • PDF downloads (54)
  • HTML views (381)
  • Cited by (0)

Other articles
by authors

[Back to Top]