2017, 4(4): 361-367. doi: 10.3934/jdg.2017019

A new perspective on the classical Cournot duopoly

1. 

Department of Economics, University of Iowa, Iowa City, IA 52242-1994, USA

2. 

Department of Economics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

* Corresponding author

Received  April 2017 Revised  September 2017 Published  September 2017

The paper provides new conditions for the existence, uniqueness, and symmetry of pure-strategy Nash equilibrium in the classical Cournot duopoly.

Citation: Rabah Amir, Igor V. Evstigneev. A new perspective on the classical Cournot duopoly. Journal of Dynamics & Games, 2017, 4 (4) : 361-367. doi: 10.3934/jdg.2017019
References:
[1]

R. Amir, Cournot oligopoly and the theory of supermodular games, Games and Economic Behavior, 15 (1996), 132-138. doi: 10.1006/game.1996.0062.

[2]

R. Amir, V. Lambson, On the effects of entry in Cournot markets, Review of Economic Studies, 67 (2000), 235-254. doi: 10.1016/S0022-0531(03)00002-4.

[3]

A. Cournot, Recherches sur les Principes Mathématiques de la Théorie des Richesses, Hachette Livre, Paris, 1838.

[4]

C. Ewerhart, Cournot games with bi-concave demand, Games and Economic Behavior, 85 (2014), 37-47. doi: 10.1016/j.geb.2014.01.001.

[5]

J. W. Friedman, Oligopoly and the Theory of Games, North-Holland, Amsterdam, 1977.

[6]

G. Gaudet, S. Salant, Uniqueness of Cournot equilibrium: New results from old methods, Review of Economic Studies, 58 (1991), 399-404. doi: 10.2307/2297975.

[7]

C. Kolstad, L. Mathiesen, Necessary and sufficient conditions for uniqueness of a Cournot equilibrium, Review of Economic Studies, 54 (1987), 681-690. doi: 10.2307/2297489.

[8]

M. McManus, Equilibrium, number and size in Cournot oligopoly, Yorkshire Bulletin of Economic and Social Research, 16 (1964), 68-75. doi: 10.1111/j.1467-8586.1964.tb00517.x.

[9]

D. Monderer, L.S. Shapley, Potential games, Games and Economic Behavior, 14 (1996), 124-143. doi: 10.1006/game.1996.0044.

[10]

W. Novshek, On the existence of Cournot equilibrium, Review of Economic Studies, 52 (1985), 85-98. doi: 10.2307/2297471.

[11]

J. Roberts, H. Sonnenschein, On the existence of Cournot equilibrium without concave profit functions, Journal of Economic Theory, 13 (1976), 85-98. doi: 10.1016/0022-0531(76)90069-7.

[12]

F. Szidarovszky, S. Yakowitz, On the existence of Cournot equilibrium, International Economic Review, 18 (1977), 787-789. doi: 10.2307/2525963.

[13]

A. Tarski, A lattice-theoretic fixed point theorem and its applications, Pacific Journal of Mathematics, 5 (1955), 285-309. doi: 10.2140/pjm.1955.5.285.

[14]

D. Topkis, Submodularity and Complementarity, Princeton University Press, Princeton, NJ., 1998.

[15]

X. Vives, Oligopoly Pricing: Old Ideas and New Tools, MIT Press, Cambridge, MA., 1999.

show all references

References:
[1]

R. Amir, Cournot oligopoly and the theory of supermodular games, Games and Economic Behavior, 15 (1996), 132-138. doi: 10.1006/game.1996.0062.

[2]

R. Amir, V. Lambson, On the effects of entry in Cournot markets, Review of Economic Studies, 67 (2000), 235-254. doi: 10.1016/S0022-0531(03)00002-4.

[3]

A. Cournot, Recherches sur les Principes Mathématiques de la Théorie des Richesses, Hachette Livre, Paris, 1838.

[4]

C. Ewerhart, Cournot games with bi-concave demand, Games and Economic Behavior, 85 (2014), 37-47. doi: 10.1016/j.geb.2014.01.001.

[5]

J. W. Friedman, Oligopoly and the Theory of Games, North-Holland, Amsterdam, 1977.

[6]

G. Gaudet, S. Salant, Uniqueness of Cournot equilibrium: New results from old methods, Review of Economic Studies, 58 (1991), 399-404. doi: 10.2307/2297975.

[7]

C. Kolstad, L. Mathiesen, Necessary and sufficient conditions for uniqueness of a Cournot equilibrium, Review of Economic Studies, 54 (1987), 681-690. doi: 10.2307/2297489.

[8]

M. McManus, Equilibrium, number and size in Cournot oligopoly, Yorkshire Bulletin of Economic and Social Research, 16 (1964), 68-75. doi: 10.1111/j.1467-8586.1964.tb00517.x.

[9]

D. Monderer, L.S. Shapley, Potential games, Games and Economic Behavior, 14 (1996), 124-143. doi: 10.1006/game.1996.0044.

[10]

W. Novshek, On the existence of Cournot equilibrium, Review of Economic Studies, 52 (1985), 85-98. doi: 10.2307/2297471.

[11]

J. Roberts, H. Sonnenschein, On the existence of Cournot equilibrium without concave profit functions, Journal of Economic Theory, 13 (1976), 85-98. doi: 10.1016/0022-0531(76)90069-7.

[12]

F. Szidarovszky, S. Yakowitz, On the existence of Cournot equilibrium, International Economic Review, 18 (1977), 787-789. doi: 10.2307/2525963.

[13]

A. Tarski, A lattice-theoretic fixed point theorem and its applications, Pacific Journal of Mathematics, 5 (1955), 285-309. doi: 10.2140/pjm.1955.5.285.

[14]

D. Topkis, Submodularity and Complementarity, Princeton University Press, Princeton, NJ., 1998.

[15]

X. Vives, Oligopoly Pricing: Old Ideas and New Tools, MIT Press, Cambridge, MA., 1999.

[1]

Alejandra Fonseca-Morales, Onésimo Hernández-Lerma. A note on differential games with Pareto--optimal Nash equilibria: Deterministic and stochastic models. Journal of Dynamics & Games, 2017, 4 (3) : 195-203. doi: 10.3934/jdg.2017012

[2]

Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial & Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625

[3]

Yannick Viossat. Game dynamics and Nash equilibria. Journal of Dynamics & Games, 2014, 1 (3) : 537-553. doi: 10.3934/jdg.2014.1.537

[4]

Iraklis Kollias, Elias Camouzis, John Leventides. Global analysis of solutions on the Cournot-Theocharis duopoly with variable marginal costs. Journal of Dynamics & Games, 2017, 4 (1) : 25-39. doi: 10.3934/jdg.2017002

[5]

Xiaolin Xu, Xiaoqiang Cai. Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium. Journal of Industrial & Management Optimization, 2008, 4 (4) : 843-859. doi: 10.3934/jimo.2008.4.843

[6]

Sylvain Sorin, Cheng Wan. Finite composite games: Equilibria and dynamics. Journal of Dynamics & Games, 2016, 3 (1) : 101-120. doi: 10.3934/jdg.2016005

[7]

Margarida Carvalho, João Pedro Pedroso, João Saraiva. Electricity day-ahead markets: Computation of Nash equilibria. Journal of Industrial & Management Optimization, 2015, 11 (3) : 985-998. doi: 10.3934/jimo.2015.11.985

[8]

Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153

[9]

Claudia Negulescu, Anne Nouri, Philippe Ghendrih, Yanick Sarazin. Existence and uniqueness of the electric potential profile in the edge of tokamak plasmas when constrained by the plasma-wall boundary physics. Kinetic & Related Models, 2008, 1 (4) : 619-639. doi: 10.3934/krm.2008.1.619

[10]

Jeremias Epperlein, Stefan Siegmund, Petr Stehlík, Vladimír  Švígler. Coexistence equilibria of evolutionary games on graphs under deterministic imitation dynamics. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 803-813. doi: 10.3934/dcdsb.2016.21.803

[11]

Beatris A. Escobedo-Trujillo. Discount-sensitive equilibria in zero-sum stochastic differential games. Journal of Dynamics & Games, 2016, 3 (1) : 25-50. doi: 10.3934/jdg.2016002

[12]

Sheri M. Markose. Complex type 4 structure changing dynamics of digital agents: Nash equilibria of a game with arms race in innovations. Journal of Dynamics & Games, 2017, 4 (3) : 255-284. doi: 10.3934/jdg.2017015

[13]

James Montaldi. Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry. Journal of Geometric Mechanics, 2014, 6 (2) : 237-260. doi: 10.3934/jgm.2014.6.237

[14]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple dimensional BSDEs. Mathematical Control & Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[15]

Alberto Bressan, Ke Han. Existence of optima and equilibria for traffic flow on networks. Networks & Heterogeneous Media, 2013, 8 (3) : 627-648. doi: 10.3934/nhm.2013.8.627

[16]

Shiren Zhu, Xiaoli Chen, Jianfu Yang. Regularity, symmetry and uniqueness of positive solutions to a nonlinear elliptic system. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2685-2696. doi: 10.3934/cpaa.2013.12.2685

[17]

Gerhard Rein. Galactic dynamics in MOND---Existence of equilibria with finite mass and compact support. Kinetic & Related Models, 2015, 8 (2) : 381-394. doi: 10.3934/krm.2015.8.381

[18]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of solutions for the non-cutoff Boltzmann equation with soft potential. Kinetic & Related Models, 2011, 4 (4) : 919-934. doi: 10.3934/krm.2011.4.919

[19]

Tong Yang, Fahuai Yi. Global existence and uniqueness for a hyperbolic system with free boundary. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 763-780. doi: 10.3934/dcds.2001.7.763

[20]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

 Impact Factor: 

Metrics

  • PDF downloads (6)
  • HTML views (29)
  • Cited by (0)

Other articles
by authors

[Back to Top]