February 2018, 11(1): 77-89. doi: 10.3934/dcdss.2018005

On consensus in the Cucker–Smale type model on isolated time scales

1. 

Faculty of Computer Science, Bialystok University of Technology, 15-351 Bia lystok, Poland

2. 

Department of Mathematics, UTAD, 5001-801 Vila Real, Portugal

3. 

Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

* Corresponding author: A. B. Malinowska

Received  September 2016 Revised  April 2017 Published  January 2018

This article addresses a consensus phenomenon in a Cucker-Smale model where the magnitude of the step size is not necessarily a constant but it is a function of time. In the considered model the weights of mutual influences in the group of agents do not change. A sufficient condition under which the proposed model tends to a consensus is obtained. This condition strikingly demonstrates the importance of the graininess function in a consensus phenomenon. The results are illustrated by numerical simulations.

Citation: Ewa Girejko, Luís Machado, Agnieszka B. Malinowska, Natália Martins. On consensus in the Cucker–Smale type model on isolated time scales. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 77-89. doi: 10.3934/dcdss.2018005
References:
[1]

F. M. AticiD. C. Biles and A. Lebedinsky, An application of time scales to economics, Math. Comput. Modelling, 43 (2006), 718-726. doi: 10.1016/j.mcm.2005.08.014.

[2]

B. Aulbach and S. Hilger, A unified approach to continuous and discrete dynamics, in Qualitative Theory of Differential Equations (Szeged, 1988), Colloq. Math. Soc. J. Bolyai, 53, North-Holland, Amsterdam, 1990, 37–56.

[3]

Z. BartosiewiczN. Martins and D. F. M. Torres, The second Euler–Lagrange equation of variational calculus on time scales, European Journal of Control, 17 (2011), 9-18. doi: 10.3166/ejc.17.9-18.

[4]

Z. Bartosiewicz, Linear positive control systems on time scales: Controllability, Mathematics of Control, Signals and Systems, 25 (2013), 327-343. doi: 10.1007/s00498-013-0106-6.

[5]

J. BelikovU. Kotta and M. Tonso, Realization of nonlinear MIMO system on homogeneous time scales, European Journal of Control, 23 (2015), 48-54. doi: 10.1016/j.ejcon.2015.01.006.

[6]

V. D. BlondelJ. M. Hendrickx and J. N. Tsitsiklis, On Krause's multi-agent consensus model with state-dependent connectivity, IEEE Transactions on Automatics Control, 54 (2009), 2586-2597. doi: 10.1109/TAC.2009.2031211.

[7]

V. D. BlondelJ. M. Hendrickx and J. N. Tsitsiklis, Continuous-time average-preserving opinion dynamics with opinion-dependent communications, SIAM J. Control Optim., 48 (2010), 5214-5240. doi: 10.1137/090766188.

[8]

M. BohnerM. Fan and J. Zhang, Periodicity of scalar dynamic equations on time scales and applications to population models, J. Math. Anal. Appl., 330 (2007), 1-9. doi: 10.1016/j.jmaa.2006.04.084.

[9]

M. Bohner and A. Peterson, Dynamic Equations on Time Scales Birkhäuser Boston, Boston, MA, 2001. doi: 10.1007/978-1-4612-0201-1.

[10]

M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales Birkhäuser Boston, Boston, MA, 2003. doi: 10.1007/978-1-4612-0201-1.

[11]

M. Bohner and H. Warth, The Beverton-Holt dynamic equation, Appl. Anal., 86 (2007), 1007-1015. doi: 10.1080/00036810701474140.

[12]

M. CaponigroM. FornasierB. Piccoli and E. Trélat, Sparse stabilization and optimal control of the Cucker-Smale model, Mathematics of Control and Related Fields, 3 (2013), 447-466. doi: 10.3934/mcrf.2013.3.447.

[13]

D. CasagrandeU. KottaM. Tonso and M. Wyrwas, Transfer equivalence and realization of nonlinear input-output delta-differential equations on homogeneous time scales, IEEE Transactions on Automatic Control, 55 (2010), 2601-2606. doi: 10.1109/TAC.2010.2060251.

[14]

S. Chatterjee and E. Seneta, Towards consensus: Some convergence theorems on repeated averaging, J. Appl. Prob., 14 (1977), 89-97. doi: 10.1017/S0021900200104681.

[15]

Cucker Smale and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842.

[16]

Cucker Smale and S. Smale, On the mathematics of emergence, Japanese Journal of Mathematics, 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x.

[17]

M. H. DeGroot, Reaching a consensus, Journal of the American Statistical Association, 69 (1974), 118-121. doi: 10.1080/01621459.1974.10480137.

[18]

J. French, A formal theory of social power, Social Networks, A Developing Paradigm, (1977), 35-48. doi: 10.1016/B978-0-12-442450-0.50010-9.

[19]

G. FuW. Zhang and Z. Li, Opinion dynamics of modified Hegselmann–Krause model in a group-based population with heterogeneous bounded confidence, Physica A, 419 (2015), 558-565. doi: 10.1016/j.physa.2014.10.045.

[20]

E. GirejkoL. MachadoA. B. Malinowska and N. Martins, Krause's model of opinion dynamics on isolated time scales, Mathematical Methods in the Applied Sciences, 39 (2016), 5302-5314. doi: 10.1002/mma.3916.

[21]

E. GirejkoA. B. Malinowska and D. F. M. Torres, The contingent epiderivative and the calculus of variations on time scales, Optimization Letters, 61 (2012), 251-264. doi: 10.1080/02331934.2010.506615.

[22]

E. Girejko and D. F. M. Torres, The existence of solutions for dynamic inclusions on time scales via duality, Applied Mathematic Letters, 25 (2012), 1632-1637. doi: 10.1016/j.aml.2012.01.026.

[23]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis, and simulation, J. Artificial Societies and Social Simulations, 5 (2002), 1-33.

[24]

S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten Ph. D thesis, Universität Würzburg, 1988.

[25]

U. Krause, A discrete nonlinear and non-autonomous model of consensus formation, Comunications in Difference Equations (eds. S. Elaydi, G. Ladas, J. Popenda and J. Rakowski), Gordon and Breach Publ. , Amsterdam, 2000,227–236.

[26]

K. Lehrer and C. Wagner, Rational Consensus in Science and Society D. Reidel Publishing Company, Dordrecht, Holland, 1981.

[27]

A. B. Malinowska and D. F. M. Torres, Natural boundary conditions in the calculus of variations, Math. Methods Appl. Sci., 33 (2010), 1712-1722. doi: 10.1002/mma.1289.

[28]

A. B. MalinowskaN. Martins and D. F. M. Torres, Transversality conditions for infinite horizon variational problems on time scales, Optim. Lett., 5 (2011), 41-53. doi: 10.1007/s11590-010-0189-7.

[29]

N. Martins and D. F. M. Torres, Calculus of variations on time scales with nabla derivatives, Nonlinear Anal., 71 (2009), e763-e773. doi: 10.1016/j.na.2008.11.035.

[30]

T. VicsekA. CzirókE. Ben-Jacob and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Letters, 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226.

[31]

H. Wang and L. Shang, Opinion dynamics in networks with common-neighbors-based connections, Physica A, 421 (2015), 180-186. doi: 10.1016/j.physa.2014.10.090.

show all references

References:
[1]

F. M. AticiD. C. Biles and A. Lebedinsky, An application of time scales to economics, Math. Comput. Modelling, 43 (2006), 718-726. doi: 10.1016/j.mcm.2005.08.014.

[2]

B. Aulbach and S. Hilger, A unified approach to continuous and discrete dynamics, in Qualitative Theory of Differential Equations (Szeged, 1988), Colloq. Math. Soc. J. Bolyai, 53, North-Holland, Amsterdam, 1990, 37–56.

[3]

Z. BartosiewiczN. Martins and D. F. M. Torres, The second Euler–Lagrange equation of variational calculus on time scales, European Journal of Control, 17 (2011), 9-18. doi: 10.3166/ejc.17.9-18.

[4]

Z. Bartosiewicz, Linear positive control systems on time scales: Controllability, Mathematics of Control, Signals and Systems, 25 (2013), 327-343. doi: 10.1007/s00498-013-0106-6.

[5]

J. BelikovU. Kotta and M. Tonso, Realization of nonlinear MIMO system on homogeneous time scales, European Journal of Control, 23 (2015), 48-54. doi: 10.1016/j.ejcon.2015.01.006.

[6]

V. D. BlondelJ. M. Hendrickx and J. N. Tsitsiklis, On Krause's multi-agent consensus model with state-dependent connectivity, IEEE Transactions on Automatics Control, 54 (2009), 2586-2597. doi: 10.1109/TAC.2009.2031211.

[7]

V. D. BlondelJ. M. Hendrickx and J. N. Tsitsiklis, Continuous-time average-preserving opinion dynamics with opinion-dependent communications, SIAM J. Control Optim., 48 (2010), 5214-5240. doi: 10.1137/090766188.

[8]

M. BohnerM. Fan and J. Zhang, Periodicity of scalar dynamic equations on time scales and applications to population models, J. Math. Anal. Appl., 330 (2007), 1-9. doi: 10.1016/j.jmaa.2006.04.084.

[9]

M. Bohner and A. Peterson, Dynamic Equations on Time Scales Birkhäuser Boston, Boston, MA, 2001. doi: 10.1007/978-1-4612-0201-1.

[10]

M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales Birkhäuser Boston, Boston, MA, 2003. doi: 10.1007/978-1-4612-0201-1.

[11]

M. Bohner and H. Warth, The Beverton-Holt dynamic equation, Appl. Anal., 86 (2007), 1007-1015. doi: 10.1080/00036810701474140.

[12]

M. CaponigroM. FornasierB. Piccoli and E. Trélat, Sparse stabilization and optimal control of the Cucker-Smale model, Mathematics of Control and Related Fields, 3 (2013), 447-466. doi: 10.3934/mcrf.2013.3.447.

[13]

D. CasagrandeU. KottaM. Tonso and M. Wyrwas, Transfer equivalence and realization of nonlinear input-output delta-differential equations on homogeneous time scales, IEEE Transactions on Automatic Control, 55 (2010), 2601-2606. doi: 10.1109/TAC.2010.2060251.

[14]

S. Chatterjee and E. Seneta, Towards consensus: Some convergence theorems on repeated averaging, J. Appl. Prob., 14 (1977), 89-97. doi: 10.1017/S0021900200104681.

[15]

Cucker Smale and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862. doi: 10.1109/TAC.2007.895842.

[16]

Cucker Smale and S. Smale, On the mathematics of emergence, Japanese Journal of Mathematics, 2 (2007), 197-227. doi: 10.1007/s11537-007-0647-x.

[17]

M. H. DeGroot, Reaching a consensus, Journal of the American Statistical Association, 69 (1974), 118-121. doi: 10.1080/01621459.1974.10480137.

[18]

J. French, A formal theory of social power, Social Networks, A Developing Paradigm, (1977), 35-48. doi: 10.1016/B978-0-12-442450-0.50010-9.

[19]

G. FuW. Zhang and Z. Li, Opinion dynamics of modified Hegselmann–Krause model in a group-based population with heterogeneous bounded confidence, Physica A, 419 (2015), 558-565. doi: 10.1016/j.physa.2014.10.045.

[20]

E. GirejkoL. MachadoA. B. Malinowska and N. Martins, Krause's model of opinion dynamics on isolated time scales, Mathematical Methods in the Applied Sciences, 39 (2016), 5302-5314. doi: 10.1002/mma.3916.

[21]

E. GirejkoA. B. Malinowska and D. F. M. Torres, The contingent epiderivative and the calculus of variations on time scales, Optimization Letters, 61 (2012), 251-264. doi: 10.1080/02331934.2010.506615.

[22]

E. Girejko and D. F. M. Torres, The existence of solutions for dynamic inclusions on time scales via duality, Applied Mathematic Letters, 25 (2012), 1632-1637. doi: 10.1016/j.aml.2012.01.026.

[23]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis, and simulation, J. Artificial Societies and Social Simulations, 5 (2002), 1-33.

[24]

S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmanningfaltigkeiten Ph. D thesis, Universität Würzburg, 1988.

[25]

U. Krause, A discrete nonlinear and non-autonomous model of consensus formation, Comunications in Difference Equations (eds. S. Elaydi, G. Ladas, J. Popenda and J. Rakowski), Gordon and Breach Publ. , Amsterdam, 2000,227–236.

[26]

K. Lehrer and C. Wagner, Rational Consensus in Science and Society D. Reidel Publishing Company, Dordrecht, Holland, 1981.

[27]

A. B. Malinowska and D. F. M. Torres, Natural boundary conditions in the calculus of variations, Math. Methods Appl. Sci., 33 (2010), 1712-1722. doi: 10.1002/mma.1289.

[28]

A. B. MalinowskaN. Martins and D. F. M. Torres, Transversality conditions for infinite horizon variational problems on time scales, Optim. Lett., 5 (2011), 41-53. doi: 10.1007/s11590-010-0189-7.

[29]

N. Martins and D. F. M. Torres, Calculus of variations on time scales with nabla derivatives, Nonlinear Anal., 71 (2009), e763-e773. doi: 10.1016/j.na.2008.11.035.

[30]

T. VicsekA. CzirókE. Ben-Jacob and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Letters, 75 (1995), 1226-1229. doi: 10.1103/PhysRevLett.75.1226.

[31]

H. Wang and L. Shang, Opinion dynamics in networks with common-neighbors-based connections, Physica A, 421 (2015), 180-186. doi: 10.1016/j.physa.2014.10.090.

Figure 1.  Time evolution of 5 consensus parameters with 30 iterations (left) and their states in the last 16 iterations (right) on $\mathbb{T}=\left\{1-\frac{1}{k}\, :\, k=1, \ldots, 10\right\}$ $\cup$ $\bigl\{t_k=1+2.5\sum_{i=0}^k|\sin(i)|\, :\, k\in \mathbb{N}_0\bigr\}.$
Figure 2.  Time evolution of 5 consensus parameters with 20 iterations (left) and their states in the last 16 iterations (right) on $\mathbb{T}=\left\{1-\frac{1}{k}\, :\, k=1, \ldots, 10\right\}$ $\cup $ $\bigl\{t_k=1+6\sum_{i=0}^k|\sin(i)|\, :\, k\in \mathbb{N}_0\bigr\}.$
Figure 3.  Time evolution of 5 consensus parameters with 50 iterations (left) and their states in the last 16 iterations (right) on $\mathbb{T}=\left\{0;0.5; 0.75; 0.875; 1.375; 1.625;\ldots\right\}$
Figure 4.  Time evolution of 5 consensus parameters with 150 iterations (left) and their states in the last 16 iterations (right) on $\mathbb{T}=\left\{1-\frac{1}{k}~:~k=1, \ldots, 50\right\} \cup \left\{1+1.2771 k~:~k\in \mathbb{N}_0\right\}$
Figure 5.  Time evolution of 5 consensus parameters with 200 iterations (left) and their states in the last 16 iterations (right) on $\mathbb{T}=1.2871\mathbb{N}_0$
Figure 6.  Time evolution of 5 consensus parameters with 300 iterations (left) and their states in the last 16 iterations (right) on the time scale when $\mu=1.2771, 1.2871, 1.2771, 1.2871, \ldots.$
Figure 7.  Time evolution of 30 consensus parameters with 40 iterations (left) and their states (right) on $\mathbb{T}=\bigl\{t_n=\sum_{k=1}^n\frac{1}{k}\, :\, n\in\mathbb{N} \bigr\}.$
Figure 8.  Time evolution of 30 consensus parameters with 50 iterations (left) and their states (right) on the time scale when $t_0=0$ and $\mu=\frac{1}{4}, \frac{5}{2}, 2, \frac{1}{4}, \frac{5}{2}, 2, \ldots.$
Figure 9.  Time evolution of 30 consensus parameters with 20 iterations (left) and their states (right) on the time scale when $t_0=0$ and $\mu=\frac{1}{4}, \frac{3}{4}, 2, \frac{1}{4}, \frac{3}{4}, 2, \ldots.$
[1]

Young-Pil Choi, Jan Haskovec. Cucker-Smale model with normalized communication weights and time delay. Kinetic & Related Models, 2017, 10 (4) : 1011-1033. doi: 10.3934/krm.2017040

[2]

Marina Dolfin, Mirosław Lachowicz. Modeling opinion dynamics: How the network enhances consensus. Networks & Heterogeneous Media, 2015, 10 (4) : 877-896. doi: 10.3934/nhm.2015.10.877

[3]

Marco Caponigro, Anna Chiara Lai, Benedetto Piccoli. A nonlinear model of opinion formation on the sphere. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4241-4268. doi: 10.3934/dcds.2015.35.4241

[4]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang, Xiongtao Zhang. Emergent dynamics in the interactions of Cucker-Smale ensembles. Kinetic & Related Models, 2017, 10 (3) : 689-723. doi: 10.3934/krm.2017028

[5]

Agnieszka B. Malinowska, Tatiana Odzijewicz. Optimal control of the discrete-time fractional-order Cucker-Smale model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 347-357. doi: 10.3934/dcdsb.2018023

[6]

Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks & Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017

[7]

Laure Pédèches. Asymptotic properties of various stochastic Cucker-Smale dynamics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2731-2762. doi: 10.3934/dcds.2018115

[8]

Hyeong-Ohk Bae, Young-Pil Choi, Seung-Yeal Ha, Moon-Jin Kang. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4419-4458. doi: 10.3934/dcds.2014.34.4419

[9]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[10]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic & Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[11]

Marco Caponigro, Massimo Fornasier, Benedetto Piccoli, Emmanuel Trélat. Sparse stabilization and optimal control of the Cucker-Smale model. Mathematical Control & Related Fields, 2013, 3 (4) : 447-466. doi: 10.3934/mcrf.2013.3.447

[12]

Seung-Yeal Ha, Dongnam Ko, Yinglong Zhang. Remarks on the critical coupling strength for the Cucker-Smale model with unit speed. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2763-2793. doi: 10.3934/dcds.2018116

[13]

Chun-Hsien Li, Suh-Yuh Yang. A new discrete Cucker-Smale flocking model under hierarchical leadership. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2587-2599. doi: 10.3934/dcdsb.2016062

[14]

Ioannis Markou. Collision-avoiding in the singular Cucker-Smale model with nonlinear velocity couplings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5245-5260. doi: 10.3934/dcds.2018232

[15]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[16]

Chiun-Chuan Chen, Seung-Yeal Ha, Xiongtao Zhang. The global well-posedness of the kinetic Cucker-Smale flocking model with chemotactic movements. Communications on Pure & Applied Analysis, 2018, 17 (2) : 505-538. doi: 10.3934/cpaa.2018028

[17]

Rainer Hegselmann, Ulrich Krause. Opinion dynamics under the influence of radical groups, charismatic leaders, and other constant signals: A simple unifying model. Networks & Heterogeneous Media, 2015, 10 (3) : 477-509. doi: 10.3934/nhm.2015.10.477

[18]

Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks & Heterogeneous Media, 2011, 6 (4) : 681-694. doi: 10.3934/nhm.2011.6.681

[19]

Aylin Aydoğdu, Sean T. McQuade, Nastassia Pouradier Duteil. Opinion Dynamics on a General Compact Riemannian Manifold. Networks & Heterogeneous Media, 2017, 12 (3) : 489-523. doi: 10.3934/nhm.2017021

[20]

Robin Cohen, Alan Tsang, Krishna Vaidyanathan, Haotian Zhang. Analyzing opinion dynamics in online social networks. Big Data & Information Analytics, 2016, 1 (4) : 279-298. doi: 10.3934/bdia.2016011

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (17)
  • HTML views (140)
  • Cited by (0)

[Back to Top]