April  2018, 11(2): 323-344. doi: 10.3934/dcdss.2018018

Double resonance for Robin problems with indefinite and unbounded potential

1. 

National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece

2. 

Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

Received  December 2016 Revised  April 2017 Published  January 2018

We study a semilinear Robin problem driven by the Laplacian plus an indefinite and unbounded potential term. The nonlinearity $f(x, s)$ is a Carathéodory function which is asymptotically linear as $ s\to ± ∞$ and resonant. In fact we assume double resonance with respect to any nonprincipal, nonnegative spectral interval $ \left[ \hat{λ}_k, \hat{λ}_{k+1}\right]$. Applying variational tools along with suitable truncation and perturbation techniques as well as Morse theory, we show that the problem has at least three nontrivial smooth solutions, two of constant sign.

Citation: Nikolaos S. Papageorgiou, Patrick Winkert. Double resonance for Robin problems with indefinite and unbounded potential. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 323-344. doi: 10.3934/dcdss.2018018
References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints Mem. Amer. Math. Soc. 196 (2008), ⅵ+70 pp. doi: 10.1090/memo/0915. Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381. Google Scholar

[3]

H. Berestycki and D. G. de Figueiredo, Double resonance in semilinear elliptic problems, Comm. Partial Differential Equations, 6 (1981), 91-120. doi: 10.1080/03605308108820172. Google Scholar

[4]

N. P. Các, On an elliptic boundary value problem at double resonance, J. Math. Anal. Appl., 132 (1988), 473-483. doi: 10.1016/0022-247X(88)90075-3. Google Scholar

[5] K.-C. Chang, Methods in Nonlinear Analysis, Springer-Verlag, Berlin, 2005. Google Scholar
[6]

G. D'AguìS. A. Marano and N. S. Papageorgiou, Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction, J. Math. Anal. Appl., 433 (2016), 1821-1845. doi: 10.1016/j.jmaa.2015.08.065. Google Scholar

[7] L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, 2006. Google Scholar
[8]

L. Gasiński and N. S. Papageorgiou, Neumann problems resonant at zero and infinity, Ann. Mat. Pura Appl. (4), 191 (2012), 395-430. doi: 10.1007/s10231-011-0188-z. Google Scholar

[9] L. Gasiński and N. S. Papageorgiou, Exercises in Analysis. Part 2: Nonlinear Analysis, Springer, Heidelberg, 2016. doi: 10.1007/978-3-319-27817-9. Google Scholar
[10]

S. Li and J. Q. Liu, Computations of critical groups at degenerate critical point and applications to nonlinear differential equations with resonance, Houston J. Math., 25 (1999), 563-582. Google Scholar

[11]

Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl., 354 (2009), 147-158. doi: 10.1016/j.jmaa.2008.12.053. Google Scholar

[12] D. MotreanuV. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5. Google Scholar
[13]

N. S. Papageorgiou and V. D. Rădulescu, Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity, Contemp. Math. , 595, Amer. Math. Soc. , Providence, RI, (2013), 293-315. doi: 10.1090/conm/595/11801. Google Scholar

[14]

N. S. Papageorgiou and V. D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010. Google Scholar

[15]

N. S. Papageorgiou and V. D. Rădulescu, Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 367 (2015), 8723-8756. doi: 10.1090/S0002-9947-2014-06518-5. Google Scholar

[16]

S. Robinson, Double resonance in semilinear elliptic boundary value problems over bounded and unbounded domains, Nonlinear Anal., 21 (1993), 407-424. doi: 10.1016/0362-546X(93)90125-C. Google Scholar

[17]

J. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues, Nonlinear Anal., 48 (2002), 881-895. doi: 10.1016/S0362-546X(00)00221-2. Google Scholar

[18]

X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, 93 (1991), 283-310. doi: 10.1016/0022-0396(91)90014-Z. Google Scholar

[19]

W. Zou, Multiple solutions for elliptic equations with resonance, Nonlinear Anal., 48 (2002), 363-376. doi: 10.1016/S0362-546X(00)00190-5. Google Scholar

show all references

References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints Mem. Amer. Math. Soc. 196 (2008), ⅵ+70 pp. doi: 10.1090/memo/0915. Google Scholar

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis, 14 (1973), 349-381. Google Scholar

[3]

H. Berestycki and D. G. de Figueiredo, Double resonance in semilinear elliptic problems, Comm. Partial Differential Equations, 6 (1981), 91-120. doi: 10.1080/03605308108820172. Google Scholar

[4]

N. P. Các, On an elliptic boundary value problem at double resonance, J. Math. Anal. Appl., 132 (1988), 473-483. doi: 10.1016/0022-247X(88)90075-3. Google Scholar

[5] K.-C. Chang, Methods in Nonlinear Analysis, Springer-Verlag, Berlin, 2005. Google Scholar
[6]

G. D'AguìS. A. Marano and N. S. Papageorgiou, Multiple solutions to a Robin problem with indefinite weight and asymmetric reaction, J. Math. Anal. Appl., 433 (2016), 1821-1845. doi: 10.1016/j.jmaa.2015.08.065. Google Scholar

[7] L. Gasiński and N. S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, 2006. Google Scholar
[8]

L. Gasiński and N. S. Papageorgiou, Neumann problems resonant at zero and infinity, Ann. Mat. Pura Appl. (4), 191 (2012), 395-430. doi: 10.1007/s10231-011-0188-z. Google Scholar

[9] L. Gasiński and N. S. Papageorgiou, Exercises in Analysis. Part 2: Nonlinear Analysis, Springer, Heidelberg, 2016. doi: 10.1007/978-3-319-27817-9. Google Scholar
[10]

S. Li and J. Q. Liu, Computations of critical groups at degenerate critical point and applications to nonlinear differential equations with resonance, Houston J. Math., 25 (1999), 563-582. Google Scholar

[11]

Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl., 354 (2009), 147-158. doi: 10.1016/j.jmaa.2008.12.053. Google Scholar

[12] D. MotreanuV. V. Motreanu and N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014. doi: 10.1007/978-1-4614-9323-5. Google Scholar
[13]

N. S. Papageorgiou and V. D. Rădulescu, Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity, Contemp. Math. , 595, Amer. Math. Soc. , Providence, RI, (2013), 293-315. doi: 10.1090/conm/595/11801. Google Scholar

[14]

N. S. Papageorgiou and V. D. Rădulescu, Multiple solutions with precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010. Google Scholar

[15]

N. S. Papageorgiou and V. D. Rădulescu, Multiplicity of solutions for resonant Neumann problems with an indefinite and unbounded potential, Trans. Amer. Math. Soc., 367 (2015), 8723-8756. doi: 10.1090/S0002-9947-2014-06518-5. Google Scholar

[16]

S. Robinson, Double resonance in semilinear elliptic boundary value problems over bounded and unbounded domains, Nonlinear Anal., 21 (1993), 407-424. doi: 10.1016/0362-546X(93)90125-C. Google Scholar

[17]

J. Su, Semilinear elliptic boundary value problems with double resonance between two consecutive eigenvalues, Nonlinear Anal., 48 (2002), 881-895. doi: 10.1016/S0362-546X(00)00221-2. Google Scholar

[18]

X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, 93 (1991), 283-310. doi: 10.1016/0022-0396(91)90014-Z. Google Scholar

[19]

W. Zou, Multiple solutions for elliptic equations with resonance, Nonlinear Anal., 48 (2002), 363-376. doi: 10.1016/S0362-546X(00)00190-5. Google Scholar

[1]

Shouchuan Hu, Nikolaos S. Papageorgiou. Double resonance for Dirichlet problems with unbounded indefinite potential and combined nonlinearities. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2005-2021. doi: 10.3934/cpaa.2012.11.2005

[2]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6133-6166. doi: 10.3934/dcds.2016068

[3]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2589-2618. doi: 10.3934/dcds.2017111

[4]

Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Dušan D. Repovš. Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term. Communications on Pure & Applied Analysis, 2018, 17 (1) : 231-241. doi: 10.3934/cpaa.2018014

[5]

Emmanuel Hebey, Jérôme Vétois. Multiple solutions for critical elliptic systems in potential form. Communications on Pure & Applied Analysis, 2008, 7 (3) : 715-741. doi: 10.3934/cpaa.2008.7.715

[6]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a critical quasilinear equation with Hardy potential. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1977-2003. doi: 10.3934/dcdss.2019128

[7]

Shujie Li, Zhitao Zhang. Multiple solutions theorems for semilinear elliptic boundary value problems with resonance at infinity. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 489-493. doi: 10.3934/dcds.1999.5.489

[8]

Wenming Zou. Multiple solutions results for two-point boundary value problem with resonance. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 485-496. doi: 10.3934/dcds.1998.4.485

[9]

Y. Kabeya. Behaviors of solutions to a scalar-field equation involving the critical Sobolev exponent with the Robin condition. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 117-134. doi: 10.3934/dcds.2006.14.117

[10]

Raffaela Capitanelli. Robin boundary condition on scale irregular fractals. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1221-1234. doi: 10.3934/cpaa.2010.9.1221

[11]

Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2393-2408. doi: 10.3934/cpaa.2013.12.2393

[12]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[13]

Daniel Morales-Silva, David Yang Gao. Complete solutions and triality theory to a nonconvex optimization problem with double-well potential in $\mathbb{R}^n $. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 271-282. doi: 10.3934/naco.2013.3.271

[14]

Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361

[15]

Anran Li, Jiabao Su. Multiple nontrivial solutions to a $p$-Kirchhoff equation. Communications on Pure & Applied Analysis, 2016, 15 (1) : 91-102. doi: 10.3934/cpaa.2016.15.91

[16]

D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Two nontrivial solutions for periodic systems with indefinite linear part. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 197-210. doi: 10.3934/dcds.2007.19.197

[17]

Xiaofei Cao, Guowei Dai. Stability analysis of a model on varying domain with the Robin boundary condition. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 935-942. doi: 10.3934/dcdss.2017048

[18]

Guowei Dai, Ruyun Ma, Haiyan Wang, Feng Wang, Kuai Xu. Partial differential equations with Robin boundary condition in online social networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1609-1624. doi: 10.3934/dcdsb.2015.20.1609

[19]

Leszek Gasiński, Nikolaos S. Papageorgiou. Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1985-1999. doi: 10.3934/cpaa.2013.12.1985

[20]

Nikolaos S. Papageorgiou, Calogero Vetro, Francesca Vetro. Multiple solutions for (p, 2)-equations at resonance. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 347-374. doi: 10.3934/dcdss.2019024

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (24)
  • HTML views (132)
  • Cited by (0)

Other articles
by authors

[Back to Top]