    January  2018, 23(1): 101-121. doi: 10.3934/dcdsb.2018007

## Exact asymptotics of positive solutions to Dickman equation

 1 Brno University of Technology, Faculty of Civil Engineering, Department of Mathematics and Descriptive Geometry, Veveří 331/95,602 00 Brno, Czech Republic 2 Universidad de Los Lagos, Departamento de Ciencias Exactas, Casilla 933, Osorno, Chile

* Corresponding author:: J. DiblÍk

Received  July 2016 Published  January 2018

The paper considers the Dickman equation
 $\dot x (t)=-\frac{1}{t}\,x(t-1),$
for
 $t \to \infty$
. The number theory uses what is called a Dickman (or Dickman -de Bruijn) function, which is the solution to this equation defined by an initial function
 $x(t)=1$
if
 $0≤ t≤ 1$
. The Dickman equation has two classes of asymptotically different positive solutions. The paper investigates their asymptotic behaviors in detail. A structure formula describing the asymptotic behavior of all solutions to the Dickman equation is given, an improvement of the well-known asymptotic behavior of the Dickman function, important in number theory, is derived and the problem of whether a given initial function defines dominant or subdominant solution is dealt with.
Citation: Josef DiblÍk, Rigoberto Medina. Exact asymptotics of positive solutions to Dickman equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 101-121. doi: 10.3934/dcdsb.2018007
##### References:
  E. Bach and R. Peralta, Asymptotic semismoothness probabilities, Math. Comp., 65 (1996), 1701-1715.  doi: 10.1090/S0025-5718-96-00775-2.  Google Scholar  R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, 1963. Google Scholar  H. Bereketoğlu and M. Pituk, Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays, Discrete Contin. Dyn. Syst., (2003), 100-107. Google Scholar  H. Bereketoğlu and F. Karakoç, Asymptotic constancy for impulsive delay differential equations, Dyn. Syst. Appl., 17 (2008), 71-83. Google Scholar  D. Broadhurst, Dickman polylogarithms and their constants, arXiv: 1004. 0519v1 [math-ph] 4 Apr 2010, 1-11. Google Scholar  N. G. de Bruijn, On the number of positive integers $≤ x$ and free of prime factors $> y$, Indag. Math., 54 (1951), 50-60. Google Scholar  N. G. de Bruijn, On the number of positive integers $≤ x$ and free of prime factors $> y$. Ⅱ, Indag. Math., 28 (1966), 239-247. Google Scholar  N. G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.), 15 (1951), 25-32. Google Scholar  J. Diblík, A criterion for existence of positive solutions of systems of retarded functional differential equations, Nonlinear Anal., 38 (1999), 327-339.  doi: 10.1016/S0362-546X(98)00199-0.  Google Scholar  J. Diblík and N. Koksch, Positive solutions of the equation $\dot{x}(t)=-c(t)x(t-τ )$ in the critical case, J. Math. Anal. Appl., 250 (2000), 635-659.  doi: 10.1006/jmaa.2000.7008.  Google Scholar  J. Diblík and M. Růžičková, Asymptotic behavior of solutions and positive solutions of differential delayed equations, Funct. Differ. Equ., 14 (2007), 83-105. Google Scholar  K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astron. Fys., 22A (1930), 1-14.   Google Scholar  I. Györi and M. Pituk, Asymptotic formulas for a scalar linear delay differential equation, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 1-14. Google Scholar  I. Györi and M. Pituk, Stability criteria for linear delay differential equations, J. Differential Equations, 10 (1997), 841-852. Google Scholar  E. Kozakiewicz, Über das asymptotische Verhalten der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument, Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 13 (1964), 577-589.   Google Scholar  E. Kozakiewicz, Über die nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument, Math. Nachr., 32 (1966), 107-113.  doi: 10.1002/mana.19660320112.  Google Scholar  E. Kozakiewicz, Zur Abschätzung des Abklingens der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument, Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 15 (1966), 675-676. Google Scholar  P. Moree, Integers without large prime factors: From Ramanujan to de Bruijn, Integers, 14A (2014), Paper No. A5, 13 pp. Google Scholar  A. D. Myshkis, Linear Differential Equations with Retarded Arguments, Second edition. Izdat. "Nauka", Moscow, 1972. Google Scholar  M. Pituk and G. Röst, Large time behavior of a linear delay differential equation with asymptotically small coefficient, Bound. Value Probl., 2014 (2014), 1-9.  doi: 10.1186/1687-2770-2014-114.  Google Scholar  V. Ramaswami, On the number of positive integers less than $x$ and free of prime divisors greated than $x^c$, Bull. Amer. Math. Soc., 55 (1949), 1122-1127.  doi: 10.1090/S0002-9904-1949-09337-0.  Google Scholar  K. P. Rybakowski, Wa_zewski's principle for retarded functional differential equations, J. Differential Equations, 36 (1980), 117-138.  doi: 10.1016/0022-0396(80)90080-7.  Google Scholar  K. Soundararajan, An asymptotic expansion related to the Dickman function, The Ramanujan Journal, 29 (2012), 25-30, arXiv:1005.3494v1.  doi: 10.1007/s11139-011-9304-3. Google Scholar  F. I. Wheeler, Two differential-difference equations arising in number theory, Trans. Amer. Math. Soc., 318 (1990), 491-523.  doi: 10.1090/S0002-9947-1990-0963247-X.  Google Scholar   Nieuw Archief voor Wiskunde, Problem Section, 4/14 No 3 Nov. 1996, p. 429. Google Scholar  Nieuw Archief voor Wiskunde, Problem Section, 5/9 No 2 June 2008, p. 232. Google Scholar  Nieuw Archief voor Wiskunde, Problem Section, 5/11 No 1 March 2010, p. 76. Google Scholar

show all references

##### References:
  E. Bach and R. Peralta, Asymptotic semismoothness probabilities, Math. Comp., 65 (1996), 1701-1715.  doi: 10.1090/S0025-5718-96-00775-2.  Google Scholar  R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, 1963. Google Scholar  H. Bereketoğlu and M. Pituk, Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays, Discrete Contin. Dyn. Syst., (2003), 100-107. Google Scholar  H. Bereketoğlu and F. Karakoç, Asymptotic constancy for impulsive delay differential equations, Dyn. Syst. Appl., 17 (2008), 71-83. Google Scholar  D. Broadhurst, Dickman polylogarithms and their constants, arXiv: 1004. 0519v1 [math-ph] 4 Apr 2010, 1-11. Google Scholar  N. G. de Bruijn, On the number of positive integers $≤ x$ and free of prime factors $> y$, Indag. Math., 54 (1951), 50-60. Google Scholar  N. G. de Bruijn, On the number of positive integers $≤ x$ and free of prime factors $> y$. Ⅱ, Indag. Math., 28 (1966), 239-247. Google Scholar  N. G. de Bruijn, The asymptotic behaviour of a function occurring in the theory of primes, J. Indian Math. Soc. (N.S.), 15 (1951), 25-32. Google Scholar  J. Diblík, A criterion for existence of positive solutions of systems of retarded functional differential equations, Nonlinear Anal., 38 (1999), 327-339.  doi: 10.1016/S0362-546X(98)00199-0.  Google Scholar  J. Diblík and N. Koksch, Positive solutions of the equation $\dot{x}(t)=-c(t)x(t-τ )$ in the critical case, J. Math. Anal. Appl., 250 (2000), 635-659.  doi: 10.1006/jmaa.2000.7008.  Google Scholar  J. Diblík and M. Růžičková, Asymptotic behavior of solutions and positive solutions of differential delayed equations, Funct. Differ. Equ., 14 (2007), 83-105. Google Scholar  K. Dickman, On the frequency of numbers containing prime factors of a certain relative magnitude, Ark. Mat. Astron. Fys., 22A (1930), 1-14.   Google Scholar  I. Györi and M. Pituk, Asymptotic formulas for a scalar linear delay differential equation, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 1-14. Google Scholar  I. Györi and M. Pituk, Stability criteria for linear delay differential equations, J. Differential Equations, 10 (1997), 841-852. Google Scholar  E. Kozakiewicz, Über das asymptotische Verhalten der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument, Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 13 (1964), 577-589.   Google Scholar  E. Kozakiewicz, Über die nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument, Math. Nachr., 32 (1966), 107-113.  doi: 10.1002/mana.19660320112.  Google Scholar  E. Kozakiewicz, Zur Abschätzung des Abklingens der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument, Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 15 (1966), 675-676. Google Scholar  P. Moree, Integers without large prime factors: From Ramanujan to de Bruijn, Integers, 14A (2014), Paper No. A5, 13 pp. Google Scholar  A. D. Myshkis, Linear Differential Equations with Retarded Arguments, Second edition. Izdat. "Nauka", Moscow, 1972. Google Scholar  M. Pituk and G. Röst, Large time behavior of a linear delay differential equation with asymptotically small coefficient, Bound. Value Probl., 2014 (2014), 1-9.  doi: 10.1186/1687-2770-2014-114.  Google Scholar  V. Ramaswami, On the number of positive integers less than $x$ and free of prime divisors greated than $x^c$, Bull. Amer. Math. Soc., 55 (1949), 1122-1127.  doi: 10.1090/S0002-9904-1949-09337-0.  Google Scholar  K. P. Rybakowski, Wa_zewski's principle for retarded functional differential equations, J. Differential Equations, 36 (1980), 117-138.  doi: 10.1016/0022-0396(80)90080-7.  Google Scholar  K. Soundararajan, An asymptotic expansion related to the Dickman function, The Ramanujan Journal, 29 (2012), 25-30, arXiv:1005.3494v1.  doi: 10.1007/s11139-011-9304-3. Google Scholar  F. I. Wheeler, Two differential-difference equations arising in number theory, Trans. Amer. Math. Soc., 318 (1990), 491-523.  doi: 10.1090/S0002-9947-1990-0963247-X.  Google Scholar   Nieuw Archief voor Wiskunde, Problem Section, 4/14 No 3 Nov. 1996, p. 429. Google Scholar  Nieuw Archief voor Wiskunde, Problem Section, 5/9 No 2 June 2008, p. 232. Google Scholar  Nieuw Archief voor Wiskunde, Problem Section, 5/11 No 1 March 2010, p. 76. Google Scholar
  Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392  Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002  Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119  Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016  Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159  Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021006  Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $q$-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440  Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $L^2$-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298  Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115  Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020172  Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299  Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119  Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033  Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018  Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387  Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312  Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229  Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $\mathbb{R}^n_+$. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033  Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033  Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

2019 Impact Factor: 1.27