-
Previous Article
A continuum of extinction rates for the fast diffusion equation
- CPAA Home
- This Issue
-
Next Article
Regularity of solutions to an integral equation associated with Bessel potential
Remarks on some dispersive estimates
1. | Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756, South Korea |
2. | Department of Applied Physics, Waseda University, Tokyo, 169-8555 |
3. | School of Mathematics and System Sciences, Beihang University, Beijing 100191, China |
References:
[1] |
J. Bergh and J. Löfström, "Interpolation Spaces," Springer-Verlag, New York, 1976. |
[2] |
Y. Cho and T. Ozawa, On small amplitude solutions to the generalized Boussinesq equations, Disctrete Cont. Dynam. Syst., 17 (2007), 691-711.
doi: 10.3934/dcds.2007.17.691. |
[3] |
S. Gustafson, K. Nakanishi and T.-P. Tsai, Scattering for the Gross-Pitaevskii equation, Math. Research Letters, 13 (2006), 273-285.
doi: 10.1142/S0219199709003491. |
[4] |
M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[5] |
E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals," Princeton Univ. Press, Princeton, N.J., 1993. |
show all references
References:
[1] |
J. Bergh and J. Löfström, "Interpolation Spaces," Springer-Verlag, New York, 1976. |
[2] |
Y. Cho and T. Ozawa, On small amplitude solutions to the generalized Boussinesq equations, Disctrete Cont. Dynam. Syst., 17 (2007), 691-711.
doi: 10.3934/dcds.2007.17.691. |
[3] |
S. Gustafson, K. Nakanishi and T.-P. Tsai, Scattering for the Gross-Pitaevskii equation, Math. Research Letters, 13 (2006), 273-285.
doi: 10.1142/S0219199709003491. |
[4] |
M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955-980.
doi: 10.1353/ajm.1998.0039. |
[5] |
E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals," Princeton Univ. Press, Princeton, N.J., 1993. |
[1] |
Fabrice Planchon, John G. Stalker, A. Shadi Tahvildar-Zadeh. Dispersive estimate for the wave equation with the inverse-square potential. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1387-1400. doi: 10.3934/dcds.2003.9.1387 |
[2] |
Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46 |
[3] |
Jerry L. Bona, Laihan Luo. More results on the decay of solutions to nonlinear, dispersive wave equations. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 151-193. doi: 10.3934/dcds.1995.1.151 |
[4] |
Yongsheng Jiang, Huan-Song Zhou. A sharp decay estimate for nonlinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1723-1730. doi: 10.3934/cpaa.2010.9.1723 |
[5] |
Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62 |
[6] |
Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure and Applied Analysis, 2019, 18 (2) : 625-641. doi: 10.3934/cpaa.2019031 |
[7] |
Oana Ivanovici. Dispersive estimates for the wave and the Klein-Gordon equations in large time inside the Friedlander domain. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5707-5742. doi: 10.3934/dcds.2021093 |
[8] |
Ola I. H. Maehlen. Solitary waves for weakly dispersive equations with inhomogeneous nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4113-4130. doi: 10.3934/dcds.2020174 |
[9] |
Nakao Hayashi, Seishirou Kobayashi, Pavel I. Naumkin. Nonlinear dispersive wave equations in two space dimensions. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1377-1393. doi: 10.3934/cpaa.2015.14.1377 |
[10] |
Min Chen, S. Dumont, Louis Dupaigne, Olivier Goubet. Decay of solutions to a water wave model with a nonlocal viscous dispersive term. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1473-1492. doi: 10.3934/dcds.2010.27.1473 |
[11] |
Hideo Kubo. On the pointwise decay estimate for the wave equation with compactly supported forcing term. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1469-1480. doi: 10.3934/cpaa.2015.14.1469 |
[12] |
Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961 |
[13] |
Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711 |
[14] |
Liangjun Weng. The interior gradient estimate for some nonlinear curvature equations. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1601-1612. doi: 10.3934/cpaa.2019076 |
[15] |
Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605 |
[16] |
C. I. Christov, M. D. Todorov. Investigation of the long-time evolution of localized solutions of a dispersive wave system. Conference Publications, 2013, 2013 (special) : 139-148. doi: 10.3934/proc.2013.2013.139 |
[17] |
Jerry Bona, Hongqiu Chen. Well-posedness for regularized nonlinear dispersive wave equations. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1253-1275. doi: 10.3934/dcds.2009.23.1253 |
[18] |
Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657 |
[19] |
Hongqiu Chen, Jerry L. Bona. Periodic traveling--wave solutions of nonlinear dispersive evolution equations. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4841-4873. doi: 10.3934/dcds.2013.33.4841 |
[20] |
Jeremy L. Marzuola. Dispersive estimates using scattering theory for matrix Hamiltonian equations. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 995-1035. doi: 10.3934/dcds.2011.30.995 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]