• Previous Article
    On a mathematical model arising from competition of Phytoplankton species for a single nutrient with internal storage: steady state analysis
  • CPAA Home
  • This Issue
  • Next Article
    Structural parameter optimization of linear elastic systems
September  2011, 10(5): 1503-1515. doi: 10.3934/cpaa.2011.10.1503

A particle method and numerical study of a quasilinear partial differential equation

1. 

The University of North Carolina at Chapel Hill, Phillips Hall, CB #3250, Chapel Hill, NC 27599-3250, United States

2. 

Nuclear Engineering Division, Institute of Nuclear Energy Research, Taoyuan County, 32546, Taiwan

3. 

Department of Mathematics, University of Wyoming, Laramie, WY 82071-3036, United States

4. 

Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei City 106, Taiwan

Received  April 2009 Revised  June 2010 Published  April 2011

We present a particle method for studying a quasilinear partial differential equation (PDE) in a class proposed for the regularization of the Hopf (inviscid Burger) equation via nonlinear dispersion-like terms. These are obtained in an advection equation by coupling the advecting field to the advected one through a Helmholtz operator. Solutions of this PDE are "regularized" in the sense that the additional terms generated by the coupling prevent solution multivaluedness from occurring. We propose a particle algorithm to solve the quasilinear PDE. "Particles" in this algorithm travel along characteristic curves of the equation, and their positions and momenta determine the solution of the PDE. The algorithm follows the particle trajectories by integrating a pair of integro-differential equations that govern the evolution of particle positions and momenta. We introduce a fast summation algorithm that reduces the computational cost from $O(N^2)$ to $O(N)$, where $N$ is the number of particles, and illustrate the relation between dynamics of the momentum-like characteristic variable and the behavior of the solution of the PDE.
Citation: Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503
References:
[1]

H. S. Bhat and R. C. Fetecau, A Hamiltonian regularization of the Burgers equation,, J. Nonlinear Sci., 16 (2006), 615. doi: 10.1007/s00332-005-0712-7.

[2]

H. S. Bhat and R. C. Fetecau, The Riemann problem for the Leray-Burgers equation,, J. Differential Equations, 246 (2009), 3957. doi: 10.1016/j.jde.2009.01.006.

[3]

R. Camassa, Characteristics and initial value problem of a completely integrable shallow water equation,, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 115.

[4]

R. Camassa, J. Huang and L. Lee, On a completely integral numerical scheme for a nonlinear shallow-water wave equation,, J. Nonlin. Math. Phys., 12 (2005), 146.

[5]

R. Camassa, J. Huang and L. Lee, Integral and integrable algorithm for a nonlinear shallow-water wave equation,, J. Comp. Phys., 216 (2006), 547. doi: 10.1016/j.jcp.2005.12.013.

[6]

R. Camassa, P. H. Chiu, L. Lee and T. W. H. Sheu, Viscous and inviscid regularizations in a class of evolutionary partial differential equations,, J. Comp. Phys., 229 (2010), 6676. doi: 10.1016/j.jcp.2010.06.002.

[7]

A. Degasperis, D. D. Holm and A. N. W. Hone, Integrable and non-integrable equations with peakons,, in, (2003), 37.

[8]

H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons,, Discrete Contin. Dyn. Syst., 14 (2006), 505.

[9]

H. Holden and X. Raynaud, Convergence of a finite difference scheme for the Camassa-Holm equation,, SIAM J. Numer. Anal., 44 (2006), 1655. doi: 10.1137/040611975.

[10]

J. Leray, Essai sur le mouvement d'un fluid visqueux emplissant l'space,, Acat Math., 63 (1934), 93.

[11]

K. Mohseni, H. Zhao and J. Marsden, Shock regularization for the Burgers equation,, AIAA Paper 2006-1516, (2006), 2006.

[12]

G. Norgard and K. Mohseni, A regularization of the Burgers equation using a filtered convective velocity,, J. Phys. A: Math. Theor., 41 (2008). doi: 10.1088/1751-8113/41/34/344016.

show all references

References:
[1]

H. S. Bhat and R. C. Fetecau, A Hamiltonian regularization of the Burgers equation,, J. Nonlinear Sci., 16 (2006), 615. doi: 10.1007/s00332-005-0712-7.

[2]

H. S. Bhat and R. C. Fetecau, The Riemann problem for the Leray-Burgers equation,, J. Differential Equations, 246 (2009), 3957. doi: 10.1016/j.jde.2009.01.006.

[3]

R. Camassa, Characteristics and initial value problem of a completely integrable shallow water equation,, Discrete Contin. Dyn. Syst. Ser. B, 3 (2003), 115.

[4]

R. Camassa, J. Huang and L. Lee, On a completely integral numerical scheme for a nonlinear shallow-water wave equation,, J. Nonlin. Math. Phys., 12 (2005), 146.

[5]

R. Camassa, J. Huang and L. Lee, Integral and integrable algorithm for a nonlinear shallow-water wave equation,, J. Comp. Phys., 216 (2006), 547. doi: 10.1016/j.jcp.2005.12.013.

[6]

R. Camassa, P. H. Chiu, L. Lee and T. W. H. Sheu, Viscous and inviscid regularizations in a class of evolutionary partial differential equations,, J. Comp. Phys., 229 (2010), 6676. doi: 10.1016/j.jcp.2010.06.002.

[7]

A. Degasperis, D. D. Holm and A. N. W. Hone, Integrable and non-integrable equations with peakons,, in, (2003), 37.

[8]

H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons,, Discrete Contin. Dyn. Syst., 14 (2006), 505.

[9]

H. Holden and X. Raynaud, Convergence of a finite difference scheme for the Camassa-Holm equation,, SIAM J. Numer. Anal., 44 (2006), 1655. doi: 10.1137/040611975.

[10]

J. Leray, Essai sur le mouvement d'un fluid visqueux emplissant l'space,, Acat Math., 63 (1934), 93.

[11]

K. Mohseni, H. Zhao and J. Marsden, Shock regularization for the Burgers equation,, AIAA Paper 2006-1516, (2006), 2006.

[12]

G. Norgard and K. Mohseni, A regularization of the Burgers equation using a filtered convective velocity,, J. Phys. A: Math. Theor., 41 (2008). doi: 10.1088/1751-8113/41/34/344016.

[1]

Panagiotis Stinis. A hybrid method for the inviscid Burgers equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 793-799. doi: 10.3934/dcds.2003.9.793

[2]

S. L. Ma'u, P. Ramankutty. An averaging method for the Helmholtz equation. Conference Publications, 2003, 2003 (Special) : 604-609. doi: 10.3934/proc.2003.2003.604

[3]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[4]

Chi Hin Chan, Magdalena Czubak, Luis Silvestre. Eventual regularization of the slightly supercritical fractional Burgers equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 847-861. doi: 10.3934/dcds.2010.27.847

[5]

Juan Carlos De los Reyes, Estefanía Loayza-Romero. Total generalized variation regularization in data assimilation for Burgers' equation. Inverse Problems & Imaging, 2019, 13 (4) : 755-786. doi: 10.3934/ipi.2019035

[6]

Avner Friedman, Harsh Vardhan Jain. A partial differential equation model of metastasized prostatic cancer. Mathematical Biosciences & Engineering, 2013, 10 (3) : 591-608. doi: 10.3934/mbe.2013.10.591

[7]

John Sylvester. An estimate for the free Helmholtz equation that scales. Inverse Problems & Imaging, 2009, 3 (2) : 333-351. doi: 10.3934/ipi.2009.3.333

[8]

Chun-Hsiung Hsia, Xiaoming Wang. On a Burgers' type equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1121-1139. doi: 10.3934/dcdsb.2006.6.1121

[9]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[10]

Sang-Yeun Shim, Marcos Capistran, Yu Chen. Rapid perturbational calculations for the Helmholtz equation in two dimensions. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 627-636. doi: 10.3934/dcds.2007.18.627

[11]

Tuhin Ghosh, Karthik Iyer. Cloaking for a quasi-linear elliptic partial differential equation. Inverse Problems & Imaging, 2018, 12 (2) : 461-491. doi: 10.3934/ipi.2018020

[12]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[13]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[14]

Susanna V. Haziot. Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4415-4427. doi: 10.3934/dcds.2019179

[15]

Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035

[16]

Ezzeddine Zahrouni. On the Lyapunov functions for the solutions of the generalized Burgers equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 391-410. doi: 10.3934/cpaa.2003.2.391

[17]

Jong Uhn Kim. On the stochastic Burgers equation with a polynomial nonlinearity in the real line. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 835-866. doi: 10.3934/dcdsb.2006.6.835

[18]

Alexandre Boritchev. Decaying turbulence for the fractional subcritical Burgers equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2229-2249. doi: 10.3934/dcds.2018092

[19]

Naoki Fujino, Mitsuru Yamazaki. Burgers' type equation with vanishing higher order. Communications on Pure & Applied Analysis, 2007, 6 (2) : 505-520. doi: 10.3934/cpaa.2007.6.505

[20]

Jean-François Rault. A bifurcation for a generalized Burgers' equation in dimension one. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 683-706. doi: 10.3934/dcdss.2012.5.683

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

[Back to Top]