
Previous Article
Strichartz estimates for Schrödinger operators with a nonsmooth magnetic potential
 DCDS Home
 This Issue

Next Article
Existence of multiple spike stationary patterns in a chemotaxis model with weak saturation
Global attractors for strongly damped wave equations with displacement dependent damping and nonlinear source term of critical exponent
1.  Department of Mathematics, Faculty of Science, Hacettepe University, Beytepe 06800, Ankara, Turkey 
References:
show all references
References:
[1] 
Filippo Dell'Oro. Global attractors for strongly damped wave equations with subcriticalcritical nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (2) : 10151027. doi: 10.3934/cpaa.2013.12.1015 
[2] 
Veronica Belleri, Vittorino Pata. Attractors for semilinear strongly damped wave equations on $\mathbb R^3$. Discrete & Continuous Dynamical Systems  A, 2001, 7 (4) : 719735. doi: 10.3934/dcds.2001.7.719 
[3] 
John M. Ball. Global attractors for damped semilinear wave equations. Discrete & Continuous Dynamical Systems  A, 2004, 10 (1&2) : 3152. doi: 10.3934/dcds.2004.10.31 
[4] 
Zhaojuan Wang, Shengfan Zhou. Existence and upper semicontinuity of random attractors for nonautonomous stochastic strongly damped wave equation with multiplicative noise. Discrete & Continuous Dynamical Systems  A, 2017, 37 (5) : 27872812. doi: 10.3934/dcds.2017120 
[5] 
Alexandre N. Carvalho, Jan W. Cholewa. Strongly damped wave equations in $W^(1,p)_0 (\Omega) \times L^p(\Omega)$. Conference Publications, 2007, 2007 (Special) : 230239. doi: 10.3934/proc.2007.2007.230 
[6] 
Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601620. doi: 10.3934/cpaa.2009.8.601 
[7] 
Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems  A, 2017, 37 (4) : 21812205. doi: 10.3934/dcds.2017094 
[8] 
Piotr Kokocki. Homotopy invariants methods in the global dynamics of strongly damped wave equation. Discrete & Continuous Dynamical Systems  A, 2016, 36 (6) : 32273250. doi: 10.3934/dcds.2016.36.3227 
[9] 
Björn Birnir, Kenneth Nelson. The existence of smooth attractors of damped and driven nonlinear wave equations with critical exponent , s = 5. Conference Publications, 1998, 1998 (Special) : 100117. doi: 10.3934/proc.1998.1998.100 
[10] 
T. F. Ma, M. L. Pelicer. Attractors for weakly damped beam equations with $p$Laplacian. Conference Publications, 2013, 2013 (special) : 525534. doi: 10.3934/proc.2013.2013.525 
[11] 
Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure & Applied Analysis, 2015, 14 (4) : 13571376. doi: 10.3934/cpaa.2015.14.1357 
[12] 
Pierre Fabrie, Cedric Galusinski, A. Miranville, Sergey Zelik. Uniform exponential attractors for a singularly perturbed damped wave equation. Discrete & Continuous Dynamical Systems  A, 2004, 10 (1&2) : 211238. doi: 10.3934/dcds.2004.10.211 
[13] 
Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 14491478. doi: 10.3934/cpaa.2018070 
[14] 
Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic & Related Models, 2013, 6 (4) : 729760. doi: 10.3934/krm.2013.6.729 
[15] 
P. Fabrie, C. Galusinski, A. Miranville. Uniform inertial sets for damped wave equations. Discrete & Continuous Dynamical Systems  A, 2000, 6 (2) : 393418. doi: 10.3934/dcds.2000.6.393 
[16] 
Alexandre Nolasco de Carvalho, Jan W. Cholewa, Tomasz Dlotko. Damped wave equations with fast growing dissipative nonlinearities. Discrete & Continuous Dynamical Systems  A, 2009, 24 (4) : 11471165. doi: 10.3934/dcds.2009.24.1147 
[17] 
Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800809. doi: 10.3934/proc.2009.2009.800 
[18] 
Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure & Applied Analysis, 2016, 15 (4) : 12651283. doi: 10.3934/cpaa.2016.15.1265 
[19] 
Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete & Continuous Dynamical Systems  S, 2009, 2 (3) : 609629. doi: 10.3934/dcdss.2009.2.609 
[20] 
Sergey Zelik. Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete & Continuous Dynamical Systems  A, 2004, 11 (2&3) : 351392. doi: 10.3934/dcds.2004.11.351 
2016 Impact Factor: 1.099
Tools
Metrics
Other articles
by authors
[Back to Top]