June  2011, 3(2): 145-196. doi: 10.3934/jgm.2011.3.145

Lyapunov constraints and global asymptotic stabilization

1. 

Centro Atmico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche, and CONICET, Argentina

2. 

Control and Dynamical Systems 107-81, California Institute of Technology, Pasadena, CA 91125, United States

3. 

United Technologies Research Center, East Hartford, CT 06118, United States

Received  October 2010 Revised  June 2011 Published  July 2011

In this paper, we develop a method for stabilizing underactuated mechanical systems by imposing kinematic constraints (more precisely Lyapunov constraints). If these constraints can be implemented by actuators, i.e., if there exists a related constraint force exerted by the actuators, then the existence of a Lyapunov function for the system under consideration is guaranteed. We establish necessary and sufficient conditions for the existence and uniqueness of constraint forces. These conditions give rise to a system of PDEs whose solution is the required Lyapunov function. To illustrate our results, we solve these PDEs for certain underactuated mechanical systems of interest such as the inertia wheel-pendulum, the inverted pendulum on a cart system and the ball and beam system.
Citation: Sergio Grillo, Jerrold E. Marsden, Sujit Nair. Lyapunov constraints and global asymptotic stabilization. Journal of Geometric Mechanics, 2011, 3 (2) : 145-196. doi: 10.3934/jgm.2011.3.145
References:
[1]

R. Abraham and J. E. Marsden, "Foundation of Mechanics,", New York, (1985).   Google Scholar

[2]

V. I. Arnold, "Mathematical Models in Classical Mechanics,", Graduate Texts in Mathematics, 60 (1978).   Google Scholar

[3]

A. M. Bloch, "Nonholonomic Mechanics and Control,", volume 24 of Interdisciplinary Applied Mathematics, (2003).   Google Scholar

[4]

A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems II: Potential shaping,, IEEE Trans. Automat. Control, 46 (2001), 1556.  doi: 10.1109/9.956051.  Google Scholar

[5]

A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems I: The first matching theorem,, IEEE Trans. Automat. Control, 45 (2000), 2253.  doi: 10.1109/9.895562.  Google Scholar

[6]

W. M. Boothby, "An Introduction to Differentiable Manifolds and Riemannian Geometry," 2nd edition, Pure and Applied Mathematics, 120,, Academic Press, (1986).   Google Scholar

[7]

F. Bullo and A. Lewis, "Geometric Control of Mechanical Systems," Texts in Applied Mathematics, 49,, Springer-Verlag, (2005).   Google Scholar

[8]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets,, J. Math. Phys., 47 (2006), 2209.  doi: 10.1063/1.2165797.  Google Scholar

[9]

H. Cendra and S. Grillo, Lagrangian systems with higher order constraints,, J. Math. Phys., 48 (2007).   Google Scholar

[10]

H. Cendra, A. Ibort, M. de León and D. Martin de Diego, A generalization of Chetaev's principle for a class of higher order non-holonomic constraints,, J. Math. Phys., 45 (2004), 2785.  doi: 10.1063/1.1763245.  Google Scholar

[11]

D. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. Woolsey, "The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems,", \emph{ESIAM: Control, (2001).   Google Scholar

[12]

B. Gharesifard, A. D. Lewis and A.-R. Mansouri, A geometric framework for stabilization by energy shaping: Sufficient conditions for existence of solutions,, Communications for Information and Systems, 8 (2008), 353.   Google Scholar

[13]

S. Grillo, "Sistemas Noholónomos Generalizados,", Ph.D thesis, (2007).   Google Scholar

[14]

S. Grillo, Higher order constrained Hamiltonian systems,, J. Math. Phys., 50 (2009).   Google Scholar

[15]

S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems,, International Journal of Geometric Methods in Modern Physics, (2010).  doi: 10.1142/S0219887810004580.  Google Scholar

[16]

H. Khalil, "Nonlinear Systems,", Upper Saddle River NJ, (1996).   Google Scholar

[17]

S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry,", New York, (1963).   Google Scholar

[18]

C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems, Geometrical Structures for Physical Theories, II (Vietri, 1996),, Rend. Sem. Mat. Univ. Pol. Torino \textbf{54} (1996), 54 (1996), 353.   Google Scholar

[19]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," Texts in Applied Mathematics, 17,, Springer-Verlag, (1994).   Google Scholar

[20]

J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis and Applications,", New York, (2001).   Google Scholar

[21]

R. Ortega, M. W. Spong, F. Gómez-Estern and G. Blankenstein, Stabilization of underactuated mechanical systems via interconnection and damping assignment,, IEEE Trans. Aut. Control, 47 (2002), 1281.  doi: 10.1109/TAC.2002.800770.  Google Scholar

[22]

D. Pérez, Sistemas noholónomos generalizados y su aplicación a la teoría de control automático mediante vínculos cinemáticos,, Proyecto Integrador, (2006).   Google Scholar

[23]

D. Pérez, "Sistemas con vínculos de orden superior y su aplicación a la teoría de control automático,", Master thesis, (2007).   Google Scholar

[24]

J. Rayleigh, "The Theory of Sound," 2nd edition,, Dover Publications, (1945).   Google Scholar

[25]

A. Shiriaev, J. W. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach,, IEEE Transactions on Automatic Control, 50 (2005), 1164.  doi: 10.1109/TAC.2005.852568.  Google Scholar

[26]

E. Sontag, "Mathematical Control Theory," Texts in Applied Mathematics, 6,, Springer-Verlag, (1998).   Google Scholar

[27]

M. W. Spong, P. Corke and R. Lozano, Nonlinear control of the inertia wheel pendulum,, Automatica, 37 (2001), 1845.  doi: 10.1016/S0005-1098(01)00145-5.  Google Scholar

[28]

E. T. Whittaker, "A Treatise on The Analytical Dynamics of Particles and Rigid Bodies,", Cambridge University Press, (1937).   Google Scholar

[29]

C. Woolsey, C. Reddy, A. Bloch, D. Chang, N. Leonard and J. Marsden, Controlled Lagrangian systems with gyroscopic forcing and dissipation,, European Journal of Control, 10 (2004), 478.  doi: 10.3166/ejc.10.478-496.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundation of Mechanics,", New York, (1985).   Google Scholar

[2]

V. I. Arnold, "Mathematical Models in Classical Mechanics,", Graduate Texts in Mathematics, 60 (1978).   Google Scholar

[3]

A. M. Bloch, "Nonholonomic Mechanics and Control,", volume 24 of Interdisciplinary Applied Mathematics, (2003).   Google Scholar

[4]

A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems II: Potential shaping,, IEEE Trans. Automat. Control, 46 (2001), 1556.  doi: 10.1109/9.956051.  Google Scholar

[5]

A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems I: The first matching theorem,, IEEE Trans. Automat. Control, 45 (2000), 2253.  doi: 10.1109/9.895562.  Google Scholar

[6]

W. M. Boothby, "An Introduction to Differentiable Manifolds and Riemannian Geometry," 2nd edition, Pure and Applied Mathematics, 120,, Academic Press, (1986).   Google Scholar

[7]

F. Bullo and A. Lewis, "Geometric Control of Mechanical Systems," Texts in Applied Mathematics, 49,, Springer-Verlag, (2005).   Google Scholar

[8]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets,, J. Math. Phys., 47 (2006), 2209.  doi: 10.1063/1.2165797.  Google Scholar

[9]

H. Cendra and S. Grillo, Lagrangian systems with higher order constraints,, J. Math. Phys., 48 (2007).   Google Scholar

[10]

H. Cendra, A. Ibort, M. de León and D. Martin de Diego, A generalization of Chetaev's principle for a class of higher order non-holonomic constraints,, J. Math. Phys., 45 (2004), 2785.  doi: 10.1063/1.1763245.  Google Scholar

[11]

D. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. Woolsey, "The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems,", \emph{ESIAM: Control, (2001).   Google Scholar

[12]

B. Gharesifard, A. D. Lewis and A.-R. Mansouri, A geometric framework for stabilization by energy shaping: Sufficient conditions for existence of solutions,, Communications for Information and Systems, 8 (2008), 353.   Google Scholar

[13]

S. Grillo, "Sistemas Noholónomos Generalizados,", Ph.D thesis, (2007).   Google Scholar

[14]

S. Grillo, Higher order constrained Hamiltonian systems,, J. Math. Phys., 50 (2009).   Google Scholar

[15]

S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems,, International Journal of Geometric Methods in Modern Physics, (2010).  doi: 10.1142/S0219887810004580.  Google Scholar

[16]

H. Khalil, "Nonlinear Systems,", Upper Saddle River NJ, (1996).   Google Scholar

[17]

S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry,", New York, (1963).   Google Scholar

[18]

C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems, Geometrical Structures for Physical Theories, II (Vietri, 1996),, Rend. Sem. Mat. Univ. Pol. Torino \textbf{54} (1996), 54 (1996), 353.   Google Scholar

[19]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," Texts in Applied Mathematics, 17,, Springer-Verlag, (1994).   Google Scholar

[20]

J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis and Applications,", New York, (2001).   Google Scholar

[21]

R. Ortega, M. W. Spong, F. Gómez-Estern and G. Blankenstein, Stabilization of underactuated mechanical systems via interconnection and damping assignment,, IEEE Trans. Aut. Control, 47 (2002), 1281.  doi: 10.1109/TAC.2002.800770.  Google Scholar

[22]

D. Pérez, Sistemas noholónomos generalizados y su aplicación a la teoría de control automático mediante vínculos cinemáticos,, Proyecto Integrador, (2006).   Google Scholar

[23]

D. Pérez, "Sistemas con vínculos de orden superior y su aplicación a la teoría de control automático,", Master thesis, (2007).   Google Scholar

[24]

J. Rayleigh, "The Theory of Sound," 2nd edition,, Dover Publications, (1945).   Google Scholar

[25]

A. Shiriaev, J. W. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach,, IEEE Transactions on Automatic Control, 50 (2005), 1164.  doi: 10.1109/TAC.2005.852568.  Google Scholar

[26]

E. Sontag, "Mathematical Control Theory," Texts in Applied Mathematics, 6,, Springer-Verlag, (1998).   Google Scholar

[27]

M. W. Spong, P. Corke and R. Lozano, Nonlinear control of the inertia wheel pendulum,, Automatica, 37 (2001), 1845.  doi: 10.1016/S0005-1098(01)00145-5.  Google Scholar

[28]

E. T. Whittaker, "A Treatise on The Analytical Dynamics of Particles and Rigid Bodies,", Cambridge University Press, (1937).   Google Scholar

[29]

C. Woolsey, C. Reddy, A. Bloch, D. Chang, N. Leonard and J. Marsden, Controlled Lagrangian systems with gyroscopic forcing and dissipation,, European Journal of Control, 10 (2004), 478.  doi: 10.3166/ejc.10.478-496.  Google Scholar

[1]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[2]

A. Alessandri, F. Bedouhene, D. Bouhadjra, A. Zemouche, P. Bagnerini. Observer-based control for a class of hybrid linear and nonlinear systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1213-1231. doi: 10.3934/dcdss.2020376

[3]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[4]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[5]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[6]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[9]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[10]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[11]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[12]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[13]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[14]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[15]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[16]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[17]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[18]

Sibel Senan, Eylem Yucel, Zeynep Orman, Ruya Samli, Sabri Arik. A Novel Lyapunov functional with application to stability analysis of neutral systems with nonlinear disturbances. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1415-1428. doi: 10.3934/dcdss.2020358

[19]

Xingyue Liang, Jianwei Xia, Guoliang Chen, Huasheng Zhang, Zhen Wang. $ \mathcal{H}_{\infty} $ control for fuzzy markovian jump systems based on sampled-data control method. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1329-1343. doi: 10.3934/dcdss.2020368

[20]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]