# American Institute of Mathematical Sciences

August  2011, 5(3): 489-504. doi: 10.3934/amc.2011.5.489

## On the order bounds for one-point AG codes

 1 Department of Mathematical Sciences, Aalborg University, Fr. Bajersvej 7G, 9220 Aalborg Øst, Denmark 2 Department of Applied Mathematics, University of Valladolid, Avda Salamanca SN, 47014 Valladolid, Castilla, Spain 3 Department of Mathematical Sciences, Aalborg University, Fr. Bajersvej 7G, 9220-Aalborg Øst, Denmark 4 Institute of Mathematics, Statistics and Computer Science, P.O. Box 6065, University of Campinas, 13083-970, Campinas, SP, Brazil

Received  November 2010 Revised  November 2010 Published  August 2011

The order bound for the minimum distance of algebraic geometry codes was originally defined for the duals of one-point codes and later generalized for arbitrary algebraic geometry codes. Another bound of order type for the minimum distance of general linear codes, and for codes from order domains in particular, was given in [1]. Here we investigate in detail the application of that bound to one-point algebraic geometry codes, obtaining a bound d* for the minimum distance of these codes. We establish a connection between d* and the order bound and its generalizations. We also study the improved code constructions based on d*. Finally we extend d* to all generalized Hamming weights.
Citation: Olav Geil, Carlos Munuera, Diego Ruano, Fernando Torres. On the order bounds for one-point AG codes. Advances in Mathematics of Communications, 2011, 5 (3) : 489-504. doi: 10.3934/amc.2011.5.489
##### References:
 [1] H. Andersen and O. Geil, Evaluation codes from order domain theory,, Finite Fields Appl., 14 (2008), 92.  doi: 10.1016/j.ffa.2006.12.004.  Google Scholar [2] P. Beelen, The order bound for general algebraic geometric codes,, Finite Fields Appl., 13 (2007), 665.  doi: 10.1016/j.ffa.2006.09.006.  Google Scholar [3] I. Duursma, Algebraic geometry codes: general theory,, in, (2008), 1.   Google Scholar [4] I. Duursma and R. Kirov, An extension of the order bound for AG codes,, in, (2009), 11.   Google Scholar [5] I. Duursma, R. Kirov and S. Park, Distance bounds for algebraic geometric codes,, preprint, ().   Google Scholar [6] I. Duursma and S. Park, Coset bounds for algebraic geometric codes,, Finite Fields Appl., 16 (2010), 36.  doi: 10.1016/j.ffa.2009.11.006.  Google Scholar [7] G. L. Feng and T. N. T. Rao, Improved geometric Goppa codes. Part I: basic theory,, IEEE Trans. Inform. Theory, 41 (1995), 1678.  doi: 10.1109/18.476241.  Google Scholar [8] J. Hansen, Codes on the Klein quartic, ideals, and decoding,, IEEE Trans. Inform. Theory, 33 (1987), 923.  doi: 10.1109/TIT.1987.1057365.  Google Scholar [9] P. Heijnen and R. Pellikaan, Generalized Hamming weights of $q$-ary Reed-Muller codes,, IEEE Trans. Inform. Theory, 44 (1998), 181.  doi: 10.1109/18.651015.  Google Scholar [10] T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic geometry codes,, in, (1998), 871.   Google Scholar [11] C. Munuera, Generalized Hamming weights and trellis complexity,, in, (2008), 363.   Google Scholar [12] C. Munuera and R. Pellikaan, Equality of geometric Goppa codes and equivalence of divisors,, J. Pure Appl. Algebra, 90 (1993), 229.  doi: 10.1016/0022-4049(93)90043-S.  Google Scholar [13] C. Munuera, A. Sepúlveda and F. Torres, Algebraic geometry codes from Castle curves,, in, (2008), 117.  doi: 10.1007/978-3-540-87448-5_13.  Google Scholar [14] H. Stichtenoth, "Algebraic Function Fields and Codes,'', Springer, (1993).   Google Scholar

show all references

##### References:
 [1] H. Andersen and O. Geil, Evaluation codes from order domain theory,, Finite Fields Appl., 14 (2008), 92.  doi: 10.1016/j.ffa.2006.12.004.  Google Scholar [2] P. Beelen, The order bound for general algebraic geometric codes,, Finite Fields Appl., 13 (2007), 665.  doi: 10.1016/j.ffa.2006.09.006.  Google Scholar [3] I. Duursma, Algebraic geometry codes: general theory,, in, (2008), 1.   Google Scholar [4] I. Duursma and R. Kirov, An extension of the order bound for AG codes,, in, (2009), 11.   Google Scholar [5] I. Duursma, R. Kirov and S. Park, Distance bounds for algebraic geometric codes,, preprint, ().   Google Scholar [6] I. Duursma and S. Park, Coset bounds for algebraic geometric codes,, Finite Fields Appl., 16 (2010), 36.  doi: 10.1016/j.ffa.2009.11.006.  Google Scholar [7] G. L. Feng and T. N. T. Rao, Improved geometric Goppa codes. Part I: basic theory,, IEEE Trans. Inform. Theory, 41 (1995), 1678.  doi: 10.1109/18.476241.  Google Scholar [8] J. Hansen, Codes on the Klein quartic, ideals, and decoding,, IEEE Trans. Inform. Theory, 33 (1987), 923.  doi: 10.1109/TIT.1987.1057365.  Google Scholar [9] P. Heijnen and R. Pellikaan, Generalized Hamming weights of $q$-ary Reed-Muller codes,, IEEE Trans. Inform. Theory, 44 (1998), 181.  doi: 10.1109/18.651015.  Google Scholar [10] T. Høholdt, J. H. van Lint and R. Pellikaan, Algebraic geometry codes,, in, (1998), 871.   Google Scholar [11] C. Munuera, Generalized Hamming weights and trellis complexity,, in, (2008), 363.   Google Scholar [12] C. Munuera and R. Pellikaan, Equality of geometric Goppa codes and equivalence of divisors,, J. Pure Appl. Algebra, 90 (1993), 229.  doi: 10.1016/0022-4049(93)90043-S.  Google Scholar [13] C. Munuera, A. Sepúlveda and F. Torres, Algebraic geometry codes from Castle curves,, in, (2008), 117.  doi: 10.1007/978-3-540-87448-5_13.  Google Scholar [14] H. Stichtenoth, "Algebraic Function Fields and Codes,'', Springer, (1993).   Google Scholar
 [1] Carlos Munuera, Fernando Torres. A note on the order bound on the minimum distance of AG codes and acute semigroups. Advances in Mathematics of Communications, 2008, 2 (2) : 175-181. doi: 10.3934/amc.2008.2.175 [2] José Joaquín Bernal, Diana H. Bueno-Carreño, Juan Jacobo Simón. Cyclic and BCH codes whose minimum distance equals their maximum BCH bound. Advances in Mathematics of Communications, 2016, 10 (2) : 459-474. doi: 10.3934/amc.2016018 [3] San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2019  doi: 10.3934/amc.2020038 [4] Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195 [5] Alonso Sepúlveda, Guilherme Tizziotti. Weierstrass semigroup and codes over the curve $y^q + y = x^{q^r + 1}$. Advances in Mathematics of Communications, 2014, 8 (1) : 67-72. doi: 10.3934/amc.2014.8.67 [6] Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65 [7] John Sheekey. A new family of linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 475-488. doi: 10.3934/amc.2016019 [8] Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018 [9] Peter Beelen, Kristian Brander. Efficient list decoding of a class of algebraic-geometry codes. Advances in Mathematics of Communications, 2010, 4 (4) : 485-518. doi: 10.3934/amc.2010.4.485 [10] J. De Beule, K. Metsch, L. Storme. Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound. Advances in Mathematics of Communications, 2008, 2 (3) : 261-272. doi: 10.3934/amc.2008.2.261 [11] Irene Márquez-Corbella, Edgar Martínez-Moro. Algebraic structure of the minimal support codewords set of some linear codes. Advances in Mathematics of Communications, 2011, 5 (2) : 233-244. doi: 10.3934/amc.2011.5.233 [12] Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021 [13] Elisa Gorla, Felice Manganiello, Joachim Rosenthal. An algebraic approach for decoding spread codes. Advances in Mathematics of Communications, 2012, 6 (4) : 443-466. doi: 10.3934/amc.2012.6.443 [14] Kamil Otal, Ferruh Özbudak. Explicit constructions of some non-Gabidulin linear maximum rank distance codes. Advances in Mathematics of Communications, 2016, 10 (3) : 589-600. doi: 10.3934/amc.2016028 [15] Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015 [16] Carlos Munuera, Morgan Barbier. Wet paper codes and the dual distance in steganography. Advances in Mathematics of Communications, 2012, 6 (3) : 273-285. doi: 10.3934/amc.2012.6.273 [17] Roland D. Barrolleta, Emilio Suárez-Canedo, Leo Storme, Peter Vandendriessche. On primitive constant dimension codes and a geometrical sunflower bound. Advances in Mathematics of Communications, 2017, 11 (4) : 757-765. doi: 10.3934/amc.2017055 [18] Srimanta Bhattacharya, Sushmita Ruj, Bimal Roy. Combinatorial batch codes: A lower bound and optimal constructions. Advances in Mathematics of Communications, 2012, 6 (2) : 165-174. doi: 10.3934/amc.2012.6.165 [19] Heide Gluesing-Luerssen, Uwe Helmke, José Ignacio Iglesias Curto. Algebraic decoding for doubly cyclic convolutional codes. Advances in Mathematics of Communications, 2010, 4 (1) : 83-99. doi: 10.3934/amc.2010.4.83 [20] Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Advances in Mathematics of Communications, 2010, 4 (1) : 69-81. doi: 10.3934/amc.2010.4.69

2019 Impact Factor: 0.734