2012, 5(2): 271-282. doi: 10.3934/dcdss.2012.5.271

Guiding-center simulations on curvilinear meshes

1. 

INRIA Nancy-Grand Est, 615 rue du Jardin Botanique, 54600 Villers-lès-Nancy, IRMA, Université de Strasbourg, 7 rue René-Descartes, 67084 Strasbourg Cedex, France, France, France, France

Received  July 2009 Revised  December 2009 Published  September 2011

The purpose of this work is to design simulation tools for magnetised plasmas in the ITER project framework. The specific issue we consider is the simulation of turbulent transport in the core of a Tokamak plasma, for which a 5D gyrokinetic model is generally used, where the fast gyromotion of the particles in the strong magnetic field is averaged in order to remove the associated fast time-scale and to reduce the dimension of 6D phase space involved in the full Vlasov model. Very accurate schemes and efficient parallel algorithms are required to cope with these still very costly simulations. The presence of a strong magnetic field constrains the time scales of the particle motion along and accross the magnetic field line, the latter being at least an order of magnitude slower. This also has an impact on the spatial variations of the observables. Therefore, the efficiency of the algorithm can be improved considerably by aligning the mesh with the magnetic field lines. For this reason, we study the behavior of semi-Lagrangian solvers in curvilinear coordinates. Before tackling the full gyrokinetic model in a future work, we consider here the reduced 2D Guiding-Center model. We introduce our numerical algorithm and provide some numerical results showing its good properties.
Citation: Jean-Philippe Braeunig, Nicolas Crouseilles, Michel Mehrenberger, Eric Sonnendrücker. Guiding-center simulations on curvilinear meshes. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 271-282. doi: 10.3934/dcdss.2012.5.271
References:
[1]

A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory,, Rev. Mod. Phys., 79 (2007), 421. doi: 10.1103/RevModPhys.79.421.

[2]

N. Crouseilles, M. Mehrenberger and E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations,, J. Comput. Phys., 229 (2010), 1927. doi: 10.1016/j.jcp.2009.11.007.

[3]

C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in conÞguration space,, J. Comput. Phys., 22 (1976), 330. doi: 10.1016/0021-9991(76)90053-X.

[4]

A. M. Dimits, et al., Comparisons and physics basis of tokamak transport models and turbulence simulations,, Phys. Plasmas, 7 (2000). doi: 10.1063/1.873896.

[5]

N. Crouseilles, G. Latu and E. Sonnendrücker, A Vlasov solver based on local cubic spline interpolation on patches,, J. Comput. Phys., 228 (2009), 1429. doi: 10.1016/j.jcp.2008.10.041.

[6]

, X. Garbet,, private communication, (2009).

[7]

V. Grandgirard, et al., Global full-f gyrokinetic simulations of plasma turbulence,, Plasma Phys. Control. Fus., 49B (2007), 173. doi: 10.1088/0741-3335/49/12B/S16.

[8]

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation,, J. Comput. Physics, 217 (2006), 395. doi: 10.1016/j.jcp.2006.01.023.

[9]

M. Shoucri, A two-level implicit scheme for the numerical solution of the linearized vorticity equation,, Int. J. Numer. Meth. Eng., 17 (1981). doi: 10.1002/nme.1620171007.

[10]

E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation,, J. Comput. Physics, 149 (1999), 201. doi: 10.1006/jcph.1998.6148.

[11]

M. Zerroukat, N. Wood and A. Staniforth, The parabolic spline method (PSM) for conservative transport problems,, Int. J. Numer. Meth. Fluids, 51 (2006), 1297. doi: 10.1002/fld.1154.

[12]

M. Zerroukat, N. Wood and A. Staniforth, Application of the parabolic spline method (PSM) to a multi-dimensional conservative semi-Lagrangian transport scheme (SLICE),, J. Comput. Phys, 225 (2007), 935. doi: 10.1016/j.jcp.2007.01.006.

show all references

References:
[1]

A. J. Brizard and T. S. Hahm, Foundations of nonlinear gyrokinetic theory,, Rev. Mod. Phys., 79 (2007), 421. doi: 10.1103/RevModPhys.79.421.

[2]

N. Crouseilles, M. Mehrenberger and E. Sonnendrücker, Conservative semi-Lagrangian schemes for Vlasov equations,, J. Comput. Phys., 229 (2010), 1927. doi: 10.1016/j.jcp.2009.11.007.

[3]

C. Z. Cheng and G. Knorr, The integration of the Vlasov equation in conÞguration space,, J. Comput. Phys., 22 (1976), 330. doi: 10.1016/0021-9991(76)90053-X.

[4]

A. M. Dimits, et al., Comparisons and physics basis of tokamak transport models and turbulence simulations,, Phys. Plasmas, 7 (2000). doi: 10.1063/1.873896.

[5]

N. Crouseilles, G. Latu and E. Sonnendrücker, A Vlasov solver based on local cubic spline interpolation on patches,, J. Comput. Phys., 228 (2009), 1429. doi: 10.1016/j.jcp.2008.10.041.

[6]

, X. Garbet,, private communication, (2009).

[7]

V. Grandgirard, et al., Global full-f gyrokinetic simulations of plasma turbulence,, Plasma Phys. Control. Fus., 49B (2007), 173. doi: 10.1088/0741-3335/49/12B/S16.

[8]

V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation,, J. Comput. Physics, 217 (2006), 395. doi: 10.1016/j.jcp.2006.01.023.

[9]

M. Shoucri, A two-level implicit scheme for the numerical solution of the linearized vorticity equation,, Int. J. Numer. Meth. Eng., 17 (1981). doi: 10.1002/nme.1620171007.

[10]

E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-Lagrangian method for the numerical resolution of the Vlasov equation,, J. Comput. Physics, 149 (1999), 201. doi: 10.1006/jcph.1998.6148.

[11]

M. Zerroukat, N. Wood and A. Staniforth, The parabolic spline method (PSM) for conservative transport problems,, Int. J. Numer. Meth. Fluids, 51 (2006), 1297. doi: 10.1002/fld.1154.

[12]

M. Zerroukat, N. Wood and A. Staniforth, Application of the parabolic spline method (PSM) to a multi-dimensional conservative semi-Lagrangian transport scheme (SLICE),, J. Comput. Phys, 225 (2007), 935. doi: 10.1016/j.jcp.2007.01.006.

[1]

Alexandre Mouton. Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic & Related Models, 2009, 2 (2) : 251-274. doi: 10.3934/krm.2009.2.251

[2]

Elisabetta Carlini, Francisco J. Silva. A semi-Lagrangian scheme for a degenerate second order mean field game system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4269-4292. doi: 10.3934/dcds.2015.35.4269

[3]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

[4]

Holger Heumann, Ralf Hiptmair. Eulerian and semi-Lagrangian methods for convection-diffusion for differential forms. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1471-1495. doi: 10.3934/dcds.2011.29.1471

[5]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355

[6]

Naoufel Ben Abdallah, Raymond El Hajj. Diffusion and guiding center approximation for particle transport in strong magnetic fields. Kinetic & Related Models, 2008, 1 (3) : 331-354. doi: 10.3934/krm.2008.1.331

[7]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-48. doi: 10.3934/dcdsb.2018067

[8]

Horst Osberger. Long-time behavior of a fully discrete Lagrangian scheme for a family of fourth order equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 405-434. doi: 10.3934/dcds.2017017

[9]

Xiantao Xiao, Liwei Zhang, Jianzhong Zhang. On convergence of augmented Lagrangian method for inverse semi-definite quadratic programming problems. Journal of Industrial & Management Optimization, 2009, 5 (2) : 319-339. doi: 10.3934/jimo.2009.5.319

[10]

Xiaojie Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 481-497. doi: 10.3934/dcds.2016.36.481

[11]

Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761

[12]

Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic & Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345

[13]

Frédéric Lebon, Raffaella Rizzoni. Modeling a hard, thin curvilinear interface. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1569-1586. doi: 10.3934/dcdss.2013.6.1569

[14]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[15]

Gung-Min Gie, Makram Hamouda, Roger Témam. Boundary layers in smooth curvilinear domains: Parabolic problems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1213-1240. doi: 10.3934/dcds.2010.26.1213

[16]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[17]

Silvia Caprino, Carlo Marchioro. On the plasma-charge model. Kinetic & Related Models, 2010, 3 (2) : 241-254. doi: 10.3934/krm.2010.3.241

[18]

François Monard. Efficient tensor tomography in fan-beam coordinates. Inverse Problems & Imaging, 2016, 10 (2) : 433-459. doi: 10.3934/ipi.2016007

[19]

Silvia Caprino, Carlo Marchioro. On a charge interacting with a plasma of unbounded mass. Kinetic & Related Models, 2011, 4 (1) : 215-226. doi: 10.3934/krm.2011.4.215

[20]

Keith Burns, Amie Wilkinson. Dynamical coherence and center bunching. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 89-100. doi: 10.3934/dcds.2008.22.89

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

[Back to Top]