2011, 5(4): 571-588. doi: 10.3934/amc.2011.5.571

Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes

1. 

Department of Mathematics, University of Scranton, Scranton, PA 18510, United States

2. 

Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain

Received  March 2010 Revised  October 2011 Published  November 2011

The generalized Gray map is defined for codes over $\mathbb{Z}_{2^k}$. We give bounds for the dimension of the kernel and the rank of the image of a code over $\mathbb{Z}_{2^k}$ with a given type and show that there exists such a code for each dimension in the interval for the kernel. We determine when the Gray image of a code over $\mathbb{Z}_{2^k}$ generates a linear self-dual code and give families of codes whose image generate binary self-dual codes. We investigate the Gray image of quaternary self-dual codes and examine when the Gray image of a self-dual code over $\mathbb{Z}_4$ is a binary self-dual code.
Citation: Steven T. Dougherty, Cristina Fernández-Córdoba. Codes over $\mathbb{Z}_{2^k}$, Gray map and self-dual codes . Advances in Mathematics of Communications, 2011, 5 (4) : 571-588. doi: 10.3934/amc.2011.5.571
References:
[1]

E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and invariant rings,, IEEE Trans. Inform. Theory, 45 (1999) , 1194. doi: 10.1109/18.761269.

[2]

M. Bilal, J. Borges, S. T. Dougherty and C. Fernández-Córdoba, Maximum distance separable codes over $\mathbbZ_4$ and $\mathbbZ_2\times\mathbbZ_4$,, Designs Codes Crypt., 61 (2011) , 31. doi: 10.1007/s10623-010-9437-1.

[3]

J. Borges, C. Fernández and J. Rifà, Every $\mathbbZ$2k-code is a binary propelinear code,, in, 10 (2001) .

[4]

J. Borges, C. Fernández and J. Rifà, Propelinear structure of $\mathbbZ$2k-linear codes,, preprint, () .

[5]

C. Carlet, $\mathbbZ$2k-linear codes,, IEEE Trans. Inform. Theory, 44 (1998) , 1543. doi: 10.1109/18.681328.

[6]

J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4,, J. Combin. Theory Ser. A, 62 (1993) , 30. doi: 10.1016/0097-3165(93)90070-O.

[7]

S. T. Dougherty, M. Harada and P. Solé, Shadow codes over $Z_4$,, Finite Fields Appl., 7 (2001) , 507. doi: 10.1006/ffta.2000.0312.

[8]

S. T. Dougherty and H. Liu, Independence of vectors in codes over rings,, Designs Codes Crypt., 51 (2009) , 55. doi: 10.1007/s10623-008-9243-1.

[9]

C. Fernández-Córdoba, J. Pujol and M. Villanueva, On rank and kernel of $\mathbbZ_4$-linear codes,, in, (2008) , 46.

[10]

C. Fernández-Córdoba, J. Pujol and M. Villanueva, $\mathbbZ_2\mathbbZ_4$-linear codes: rank and kernel,, Designs Codes Crypt., 56 (2010) , 43. doi: 10.1007/s10623-009-9340-9.

[11]

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbbZ_4$-linearity of Kerdock, Preparata, Goethals and related codes,, IEEE Trans. Inform. Theory, 40 (1994) , 301. doi: 10.1109/18.312154.

[12]

M. Klemm, Selbstduale Codes über dem Ring der ganzen Zahlen modulo 4,, Arch. Math., 53 (1989) , 201. doi: 10.1007/BF01198572.

[13]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'', North-Holland, (1977) .

[14]

Y. H. Park, Modular independence and generator matrices for codes over $Z_m$,, Designs Codes Crypt., 50 (2009) , 147. doi: 10.1007/s10623-008-9220-8.

[15]

V. S. Pless, W. C. Huffman and R. A. Brualdi, "Handbook of Coding Theory. I,'', North-Holland, (1998) .

[16]

E. M. Rains and N. J. A. Sloane, Self-dual codes,, in, (1998) , 177.

[17]

K. Shiromoto, A basic exact sequence for the Lee and Euclidean weights of linear codes over $\mathbbZ_l$,, Linear Algebra Appl. \textbf{295} (1999), 295 (1999) , 191. doi: 10.1016/S0024-3795(99)00125-1.

[18]

H. Tapia-Recillas and G. Vega, On the $\mathbbZ_2^k$-linear and quaternary codes,, SIAM J. Discrete Math., 17 (2003) , 103. doi: 10.1137/S0895480101397219.

[19]

Z.-X. Wan, "Quaternary Codes,'', World Scientific, (1997) . doi: 10.1142/9789812798121.

[20]

J. Wood, Duality for modules over finite rings and applications to coding theory,, American J. Math., 121 (1999) , 555. doi: 10.1353/ajm.1999.0024.

show all references

References:
[1]

E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and invariant rings,, IEEE Trans. Inform. Theory, 45 (1999) , 1194. doi: 10.1109/18.761269.

[2]

M. Bilal, J. Borges, S. T. Dougherty and C. Fernández-Córdoba, Maximum distance separable codes over $\mathbbZ_4$ and $\mathbbZ_2\times\mathbbZ_4$,, Designs Codes Crypt., 61 (2011) , 31. doi: 10.1007/s10623-010-9437-1.

[3]

J. Borges, C. Fernández and J. Rifà, Every $\mathbbZ$2k-code is a binary propelinear code,, in, 10 (2001) .

[4]

J. Borges, C. Fernández and J. Rifà, Propelinear structure of $\mathbbZ$2k-linear codes,, preprint, () .

[5]

C. Carlet, $\mathbbZ$2k-linear codes,, IEEE Trans. Inform. Theory, 44 (1998) , 1543. doi: 10.1109/18.681328.

[6]

J. H. Conway and N. J. A. Sloane, Self-dual codes over the integers modulo 4,, J. Combin. Theory Ser. A, 62 (1993) , 30. doi: 10.1016/0097-3165(93)90070-O.

[7]

S. T. Dougherty, M. Harada and P. Solé, Shadow codes over $Z_4$,, Finite Fields Appl., 7 (2001) , 507. doi: 10.1006/ffta.2000.0312.

[8]

S. T. Dougherty and H. Liu, Independence of vectors in codes over rings,, Designs Codes Crypt., 51 (2009) , 55. doi: 10.1007/s10623-008-9243-1.

[9]

C. Fernández-Córdoba, J. Pujol and M. Villanueva, On rank and kernel of $\mathbbZ_4$-linear codes,, in, (2008) , 46.

[10]

C. Fernández-Córdoba, J. Pujol and M. Villanueva, $\mathbbZ_2\mathbbZ_4$-linear codes: rank and kernel,, Designs Codes Crypt., 56 (2010) , 43. doi: 10.1007/s10623-009-9340-9.

[11]

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbbZ_4$-linearity of Kerdock, Preparata, Goethals and related codes,, IEEE Trans. Inform. Theory, 40 (1994) , 301. doi: 10.1109/18.312154.

[12]

M. Klemm, Selbstduale Codes über dem Ring der ganzen Zahlen modulo 4,, Arch. Math., 53 (1989) , 201. doi: 10.1007/BF01198572.

[13]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'', North-Holland, (1977) .

[14]

Y. H. Park, Modular independence and generator matrices for codes over $Z_m$,, Designs Codes Crypt., 50 (2009) , 147. doi: 10.1007/s10623-008-9220-8.

[15]

V. S. Pless, W. C. Huffman and R. A. Brualdi, "Handbook of Coding Theory. I,'', North-Holland, (1998) .

[16]

E. M. Rains and N. J. A. Sloane, Self-dual codes,, in, (1998) , 177.

[17]

K. Shiromoto, A basic exact sequence for the Lee and Euclidean weights of linear codes over $\mathbbZ_l$,, Linear Algebra Appl. \textbf{295} (1999), 295 (1999) , 191. doi: 10.1016/S0024-3795(99)00125-1.

[18]

H. Tapia-Recillas and G. Vega, On the $\mathbbZ_2^k$-linear and quaternary codes,, SIAM J. Discrete Math., 17 (2003) , 103. doi: 10.1137/S0895480101397219.

[19]

Z.-X. Wan, "Quaternary Codes,'', World Scientific, (1997) . doi: 10.1142/9789812798121.

[20]

J. Wood, Duality for modules over finite rings and applications to coding theory,, American J. Math., 121 (1999) , 555. doi: 10.1353/ajm.1999.0024.

[1]

Joaquim Borges, Steven T. Dougherty, Cristina Fernández-Córdoba. Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$. Advances in Mathematics of Communications, 2012, 6 (3) : 287-303. doi: 10.3934/amc.2012.6.287

[2]

Helena Rifà-Pous, Josep Rifà, Lorena Ronquillo. $\mathbb{Z}_2\mathbb{Z}_4$-additive perfect codes in Steganography. Advances in Mathematics of Communications, 2011, 5 (3) : 425-433. doi: 10.3934/amc.2011.5.425

[3]

Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035

[4]

Makoto Araya, Masaaki Harada, Hiroki Ito, Ken Saito. On the classification of $\mathbb{Z}_4$-codes. Advances in Mathematics of Communications, 2017, 11 (4) : 747-756. doi: 10.3934/amc.2017054

[5]

Thomas Feulner. Canonization of linear codes over $\mathbb Z$4. Advances in Mathematics of Communications, 2011, 5 (2) : 245-266. doi: 10.3934/amc.2011.5.245

[6]

Jean Bourgain. On random Schrödinger operators on $\mathbb Z^2$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 1-15. doi: 10.3934/dcds.2002.8.1

[7]

Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040

[8]

Anatole Katok, Federico Rodriguez Hertz. Uniqueness of large invariant measures for $\mathbb{Z}^k$ actions with Cartan homotopy data. Journal of Modern Dynamics, 2007, 1 (2) : 287-300. doi: 10.3934/jmd.2007.1.287

[9]

Jennifer D. Key, Washiela Fish, Eric Mwambene. Codes from the incidence matrices and line graphs of Hamming graphs $H^k(n,2)$ for $k \geq 2$. Advances in Mathematics of Communications, 2011, 5 (2) : 373-394. doi: 10.3934/amc.2011.5.373

[10]

W. Cary Huffman. Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order. Advances in Mathematics of Communications, 2013, 7 (1) : 57-90. doi: 10.3934/amc.2013.7.57

[11]

Dongchen Li, Dmitry V. Turaev. Existence of heterodimensional cycles near Shilnikov loops in systems with a $\mathbb{Z}_2$ symmetry. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4399-4437. doi: 10.3934/dcds.2017189

[12]

Michael Kiermaier, Matthias Koch, Sascha Kurz. $2$-arcs of maximal size in the affine and the projective Hjelmslev plane over $\mathbb Z$25. Advances in Mathematics of Communications, 2011, 5 (2) : 287-301. doi: 10.3934/amc.2011.5.287

[13]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[14]

Adel Alahmadi, Steven Dougherty, André Leroy, Patrick Solé. On the duality and the direction of polycyclic codes. Advances in Mathematics of Communications, 2016, 10 (4) : 921-929. doi: 10.3934/amc.2016049

[15]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[16]

W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357

[17]

T. Aaron Gulliver, Masaaki Harada, Hiroki Miyabayashi. Double circulant and quasi-twisted self-dual codes over $\mathbb F_5$ and $\mathbb F_7$. Advances in Mathematics of Communications, 2007, 1 (2) : 223-238. doi: 10.3934/amc.2007.1.223

[18]

Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237

[19]

Somphong Jitman, San Ling, Ekkasit Sangwisut. On self-dual cyclic codes of length $p^a$ over $GR(p^2,s)$. Advances in Mathematics of Communications, 2016, 10 (2) : 255-273. doi: 10.3934/amc.2016004

[20]

Suat Karadeniz, Bahattin Yildiz. Double-circulant and bordered-double-circulant constructions for self-dual codes over $R_2$. Advances in Mathematics of Communications, 2012, 6 (2) : 193-202. doi: 10.3934/amc.2012.6.193

2016 Impact Factor: 0.8

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (8)

[Back to Top]