2012, 5(4): 865-878. doi: 10.3934/dcdss.2012.5.865

A priori bounds for weak solutions to elliptic equations with nonstandard growth

1. 

Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

2. 

Martin-Luther-Universität Halle-Wittenberg, Institut für Mathematik, Theodor-Lieser-Strasse 5, D-06120 Halle, Germany

Received  March 2011 Revised  July 2011 Published  November 2011

In this paper we study elliptic equations with a nonlinear conormal derivative boundary condition involving nonstandard growth terms. By means of the localization method and De Giorgi's iteration technique we derive global a priori bounds for weak solutions of such problems.
Citation: Patrick Winkert, Rico Zacher. A priori bounds for weak solutions to elliptic equations with nonstandard growth. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 865-878. doi: 10.3934/dcdss.2012.5.865
References:
[1]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth,, Arch. Ration. Mech. Anal., 156 (2001), 121. doi: 10.1007/s002050100117.

[2]

E. Acerbi and G. Mingione, Regularity results for electrorheological fluids: The stationary case,, C. R. Math. Acad. Sci. Paris, 334 (2002), 817.

[3]

S. N. Antontsev and L. Consiglieri, Elliptic boundary value problems with nonstandard growth conditions,, Nonlinear Anal., 71 (2009), 891. doi: 10.1016/j.na.2008.10.109.

[4]

S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 19. doi: 10.1007/s11565-006-0002-9.

[5]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math., 66 (2006), 1383. doi: 10.1137/050624522.

[6]

V. Chiadò Piat and A. Coscia, Hölder continuity of minimizers of functionals with variable growth exponent,, Manuscripta Math., 93 (1997), 283. doi: 10.1007/BF02677472.

[7]

E. DiBenedetto, "Degenerate Parabolic Equations,", Universitext, (1993).

[8]

L. Diening, "Theoretical and Numerical Results for Electrorheological Fluids,", Ph.D thesis, (2002).

[9]

L. Diening, F. Ettwein and M. Růžička, $C^{1,\alpha}$-regularity for electrorheological fluids in two dimensions,, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 207. doi: 10.1007/s00030-007-5026-z.

[10]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, "Lebesgue and Sobolev spaces with variable exponents,", Lecture Notes in Mathematics, 2017 (2011).

[11]

M. Eleuteri and J. Habermann, Regularity results for a class of obstacle problems under nonstandard growth conditions,, J. Math. Anal. Appl., 344 (2008), 1120. doi: 10.1016/j.jmaa.2008.03.068.

[12]

X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces,, J. Math. Anal. Appl., 339 (2008), 1395. doi: 10.1016/j.jmaa.2007.08.003.

[13]

X. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form,, J. Differential Equations, 235 (2007), 397.

[14]

X. Fan, Local boundedness of quasi-minimizers of integral functions with variable exponent anisotropic growth and applications,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 619. doi: 10.1007/s00030-010-0072-3.

[15]

X. Fan and J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$,, J. Math. Anal. Appl., 262 (2001), 749.

[16]

X. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity,, Nonlinear Anal., 36 (1999), 295. doi: 10.1016/S0362-546X(97)00628-7.

[17]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424. doi: 10.1006/jmaa.2000.7617.

[18]

X. Fan and D. Zhao, The quasi-minimizer of integral functionals with $m(x)$ growth conditions,, Nonlinear Anal., 39 (2000), 807. doi: 10.1016/S0362-546X(98)00239-9.

[19]

L. Gasiński and N. S. Papageorgiou, Anisotropic nonlinear Neumann problems,, Calc. Var. Partial Differential Equations, 42 (2011), 323. doi: 10.1007/s00526-011-0390-2.

[20]

J. Habermann and A. Zatorska-Goldstein, Regularity for minimizers of functionals with nonstandard growth by $\mathcalA$-harmonic approximation,, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 169. doi: 10.1007/s00030-007-7007-7.

[21]

P. Harjulehto, J. Kinnunen and T. Lukkari, Unbounded supersolutions of nonlinear equations with nonstandard growth,, Bound. Value Probl., (2007).

[22]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, Czechoslovak Math. J., 41(116) (1991), 592.

[23]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, 23 (1967).

[24]

V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces,, Nonlinear Anal., 71 (2009), 3305. doi: 10.1016/j.na.2009.01.211.

[25]

V. Liskevich and I. I. Skrypnik, Harnack inequality and continuity of solutions to elliptic equations with nonstandard growth conditions and lower order terms,, Ann. Mat. Pura Appl. (4), 189 (2010), 333.

[26]

T. Lukkari, Boundary continuity of solutions to elliptic equations with nonstandard growth,, Manuscripta Math., 132 (2010), 463. doi: 10.1007/s00229-010-0355-3.

[27]

T. Lukkari, Singular solutions of elliptic equations with nonstandard growth,, Math. Nachr., 282 (2009), 1770. doi: 10.1002/mana.200610822.

[28]

P. Pucci and R. Servadei, Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations,, Indiana Univ. Math. J., 57 (2008), 3329. doi: 10.1512/iumj.2008.57.3525.

[29]

K. R. Rajagopal and M. Růžička, Mathematical modeling of electrorheological materials,, Cont. Mech. and Thermodyn., 13 (2001), 59. doi: 10.1007/s001610100034.

[30]

W. Rudin, "Functional Analysis,", McGraw-Hill Series in Higher Mathematics, (1973).

[31]

M. Růžička, "Electrorheological Fluids: Modeling and Mathematical Theory,", Lecture Notes in Mathematics, 1748 (2000).

[32]

V. Vergara and R. Zacher, A priori bounds for degenerate and singular evolutionary partial integro-differential equations,, Nonlinear Anal., 73 (2010), 3572. doi: 10.1016/j.na.2010.07.039.

[33]

P. Winkert, Constant-sign and sign-changing solutions for nonlinear elliptic equations with Neumann boundary values,, Adv. Differential Equations, 15 (2010), 561.

[34]

P. Winkert, $L^\infty$ -estimates for nonlinear elliptic Neumann boundary value problems,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 289. doi: 10.1007/s00030-009-0054-5.

[35]

V. V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system,, Differ. Equ., 33 (1997), 108.

[36]

V. V. Zhikov, On some variational problems,, Russian J. Math. Phys., 5 (1997), 105.

show all references

References:
[1]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth,, Arch. Ration. Mech. Anal., 156 (2001), 121. doi: 10.1007/s002050100117.

[2]

E. Acerbi and G. Mingione, Regularity results for electrorheological fluids: The stationary case,, C. R. Math. Acad. Sci. Paris, 334 (2002), 817.

[3]

S. N. Antontsev and L. Consiglieri, Elliptic boundary value problems with nonstandard growth conditions,, Nonlinear Anal., 71 (2009), 891. doi: 10.1016/j.na.2008.10.109.

[4]

S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows,, Ann. Univ. Ferrara Sez. VII Sci. Mat., 52 (2006), 19. doi: 10.1007/s11565-006-0002-9.

[5]

Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math., 66 (2006), 1383. doi: 10.1137/050624522.

[6]

V. Chiadò Piat and A. Coscia, Hölder continuity of minimizers of functionals with variable growth exponent,, Manuscripta Math., 93 (1997), 283. doi: 10.1007/BF02677472.

[7]

E. DiBenedetto, "Degenerate Parabolic Equations,", Universitext, (1993).

[8]

L. Diening, "Theoretical and Numerical Results for Electrorheological Fluids,", Ph.D thesis, (2002).

[9]

L. Diening, F. Ettwein and M. Růžička, $C^{1,\alpha}$-regularity for electrorheological fluids in two dimensions,, NoDEA Nonlinear Differential Equations Appl., 14 (2007), 207. doi: 10.1007/s00030-007-5026-z.

[10]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, "Lebesgue and Sobolev spaces with variable exponents,", Lecture Notes in Mathematics, 2017 (2011).

[11]

M. Eleuteri and J. Habermann, Regularity results for a class of obstacle problems under nonstandard growth conditions,, J. Math. Anal. Appl., 344 (2008), 1120. doi: 10.1016/j.jmaa.2008.03.068.

[12]

X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces,, J. Math. Anal. Appl., 339 (2008), 1395. doi: 10.1016/j.jmaa.2007.08.003.

[13]

X. Fan, Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form,, J. Differential Equations, 235 (2007), 397.

[14]

X. Fan, Local boundedness of quasi-minimizers of integral functions with variable exponent anisotropic growth and applications,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 619. doi: 10.1007/s00030-010-0072-3.

[15]

X. Fan and J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k,p(x)}(\Omega)$,, J. Math. Anal. Appl., 262 (2001), 749.

[16]

X. Fan and D. Zhao, A class of De Giorgi type and Hölder continuity,, Nonlinear Anal., 36 (1999), 295. doi: 10.1016/S0362-546X(97)00628-7.

[17]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl., 263 (2001), 424. doi: 10.1006/jmaa.2000.7617.

[18]

X. Fan and D. Zhao, The quasi-minimizer of integral functionals with $m(x)$ growth conditions,, Nonlinear Anal., 39 (2000), 807. doi: 10.1016/S0362-546X(98)00239-9.

[19]

L. Gasiński and N. S. Papageorgiou, Anisotropic nonlinear Neumann problems,, Calc. Var. Partial Differential Equations, 42 (2011), 323. doi: 10.1007/s00526-011-0390-2.

[20]

J. Habermann and A. Zatorska-Goldstein, Regularity for minimizers of functionals with nonstandard growth by $\mathcalA$-harmonic approximation,, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 169. doi: 10.1007/s00030-007-7007-7.

[21]

P. Harjulehto, J. Kinnunen and T. Lukkari, Unbounded supersolutions of nonlinear equations with nonstandard growth,, Bound. Value Probl., (2007).

[22]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, Czechoslovak Math. J., 41(116) (1991), 592.

[23]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", Translations of Mathematical Monographs, 23 (1967).

[24]

V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces,, Nonlinear Anal., 71 (2009), 3305. doi: 10.1016/j.na.2009.01.211.

[25]

V. Liskevich and I. I. Skrypnik, Harnack inequality and continuity of solutions to elliptic equations with nonstandard growth conditions and lower order terms,, Ann. Mat. Pura Appl. (4), 189 (2010), 333.

[26]

T. Lukkari, Boundary continuity of solutions to elliptic equations with nonstandard growth,, Manuscripta Math., 132 (2010), 463. doi: 10.1007/s00229-010-0355-3.

[27]

T. Lukkari, Singular solutions of elliptic equations with nonstandard growth,, Math. Nachr., 282 (2009), 1770. doi: 10.1002/mana.200610822.

[28]

P. Pucci and R. Servadei, Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations,, Indiana Univ. Math. J., 57 (2008), 3329. doi: 10.1512/iumj.2008.57.3525.

[29]

K. R. Rajagopal and M. Růžička, Mathematical modeling of electrorheological materials,, Cont. Mech. and Thermodyn., 13 (2001), 59. doi: 10.1007/s001610100034.

[30]

W. Rudin, "Functional Analysis,", McGraw-Hill Series in Higher Mathematics, (1973).

[31]

M. Růžička, "Electrorheological Fluids: Modeling and Mathematical Theory,", Lecture Notes in Mathematics, 1748 (2000).

[32]

V. Vergara and R. Zacher, A priori bounds for degenerate and singular evolutionary partial integro-differential equations,, Nonlinear Anal., 73 (2010), 3572. doi: 10.1016/j.na.2010.07.039.

[33]

P. Winkert, Constant-sign and sign-changing solutions for nonlinear elliptic equations with Neumann boundary values,, Adv. Differential Equations, 15 (2010), 561.

[34]

P. Winkert, $L^\infty$ -estimates for nonlinear elliptic Neumann boundary value problems,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 289. doi: 10.1007/s00030-009-0054-5.

[35]

V. V. Zhikov, Meyer-type estimates for solving the nonlinear Stokes system,, Differ. Equ., 33 (1997), 108.

[36]

V. V. Zhikov, On some variational problems,, Russian J. Math. Phys., 5 (1997), 105.

[1]

SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026

[2]

Tomasz Adamowicz, Przemysław Górka. The Liouville theorems for elliptic equations with nonstandard growth. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2377-2392. doi: 10.3934/cpaa.2015.14.2377

[3]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[4]

Luis A. Caffarelli, Alexis F. Vasseur. The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 409-427. doi: 10.3934/dcdss.2010.3.409

[5]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[6]

Li Yin, Jinghua Yao, Qihu Zhang, Chunshan Zhao. Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2207-2226. doi: 10.3934/dcds.2017095

[7]

Fabio Paronetto. A Harnack type inequality and a maximum principle for an elliptic-parabolic and forward-backward parabolic De Giorgi class. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 853-866. doi: 10.3934/dcdss.2017043

[8]

Carla Baroncini, Julián Fernández Bonder. An extension of a Theorem of V. Šverák to variable exponent spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1987-2007. doi: 10.3934/cpaa.2015.14.1987

[9]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[10]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[11]

Changfeng Gui. On some problems related to de Giorgi’s conjecture. Communications on Pure & Applied Analysis, 2003, 2 (1) : 101-106. doi: 10.3934/cpaa.2003.2.101

[12]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[13]

P. Cerejeiras, U. Kähler, M. M. Rodrigues, N. Vieira. Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2253-2272. doi: 10.3934/cpaa.2014.13.2253

[14]

Maria-Magdalena Boureanu. Fourth-order problems with Leray-Lions type operators in variable exponent spaces. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 231-243. doi: 10.3934/dcdss.2019016

[15]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[16]

Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038

[17]

Paolo Baroni, Agnese Di Castro, Giampiero Palatucci. Intrinsic geometry and De Giorgi classes for certain anisotropic problems. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 647-659. doi: 10.3934/dcdss.2017032

[18]

Farman Mamedov, Sara Monsurrò, Maria Transirico. Potential estimates and applications to elliptic equations. Conference Publications, 2015, 2015 (special) : 793-800. doi: 10.3934/proc.2015.0793

[19]

Stanislav Antontsev, Michel Chipot, Sergey Shmarev. Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1527-1546. doi: 10.3934/cpaa.2013.12.1527

[20]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]