2012, 7(1): 113-126. doi: 10.3934/nhm.2012.7.113

Robustness of finite element simulations in densely packed random particle composites

1. 

Humboldt-Universität zu Berlin, Institut für Mathematik, Unter den Linden 6, 10099 Berlin, Germany

Received  July 2011 Revised  October 2011 Published  February 2012

This paper presents some weighted $H^2$-regularity estimates for a model Poisson problem with discontinuous coefficient at high contrast. The coefficient represents a random particle reinforced composite material, i.e., perfectly conducting circular particles are randomly distributed in some background material with low conductivity. Based on these regularity results we study the percolation of thermal conductivity of the material as the volume fraction of the particles is close to the jammed state. We prove that the characteristic percolation behavior of the material is well captured by standard conforming finite element models.
Citation: Daniel Peterseim. Robustness of finite element simulations in densely packed random particle composites. Networks & Heterogeneous Media, 2012, 7 (1) : 113-126. doi: 10.3934/nhm.2012.7.113
References:
[1]

I. Babuška and B. Q. Guo, Regularity of the solution of elliptic problems with piecewise analytic data. II: The trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions,, SIAM J. Math. Anal., 20 (1989), 763. doi: 10.1137/0520054.

[2]

L. Berlyand and A. Kolpakov, Network approximation in the limit of small interparticle distance of the effective properties of a high-contrast random dispersed composite,, Arch. Ration. Mech. Anal., 159 (2001), 179. doi: 10.1007/s002050100142.

[3]

L. Berlyand and A. Novikov, Error of the network approximation for densely packed composites with irregular geometry,, SIAM J. Math. Anal., 34 (2002), 385. doi: 10.1137/S0036141001397144.

[4]

L. Borcea and G. C. Papanicolaou, Network approximation for transport properties of high contrast materials,, SIAM J. Appl. Math., 58 (1998), 501. doi: 10.1137/S0036139996301891.

[5]

G. A. Chechkin, Yu. O. Koroleva and L.-E. Persson, On the precise asymptotics of the constant in Friedrich's inequality for functions vanishing on the part of the boundary with microinhomogeneous structure,, J. Inequal. Appl., 2007 (3413).

[6]

L. C. Evans, "Partial Differential Equations,'' 2nd edition,, Graduate Studies in Mathematics, 19 (2010).

[7]

J. M. Melenk, "$hp$-Finite Element Methods for Singular Perturbations,'', Lecture Notes in Mathematics, 1796 (2002).

[8]

D. Peterseim, Generalized delaunay partitions and composite material modeling, preprint,, DFG Research Center Matheon Berlin, 690 (2010).

[9]

D. Peterseim, Triangulating a system of disks,, in, (2010), 241.

[10]

D. Peterseim and C. Carstensen, Finite element network approximation of conductivity in particle composites,, preprint, 807 (2010).

show all references

References:
[1]

I. Babuška and B. Q. Guo, Regularity of the solution of elliptic problems with piecewise analytic data. II: The trace spaces and application to the boundary value problems with nonhomogeneous boundary conditions,, SIAM J. Math. Anal., 20 (1989), 763. doi: 10.1137/0520054.

[2]

L. Berlyand and A. Kolpakov, Network approximation in the limit of small interparticle distance of the effective properties of a high-contrast random dispersed composite,, Arch. Ration. Mech. Anal., 159 (2001), 179. doi: 10.1007/s002050100142.

[3]

L. Berlyand and A. Novikov, Error of the network approximation for densely packed composites with irregular geometry,, SIAM J. Math. Anal., 34 (2002), 385. doi: 10.1137/S0036141001397144.

[4]

L. Borcea and G. C. Papanicolaou, Network approximation for transport properties of high contrast materials,, SIAM J. Appl. Math., 58 (1998), 501. doi: 10.1137/S0036139996301891.

[5]

G. A. Chechkin, Yu. O. Koroleva and L.-E. Persson, On the precise asymptotics of the constant in Friedrich's inequality for functions vanishing on the part of the boundary with microinhomogeneous structure,, J. Inequal. Appl., 2007 (3413).

[6]

L. C. Evans, "Partial Differential Equations,'' 2nd edition,, Graduate Studies in Mathematics, 19 (2010).

[7]

J. M. Melenk, "$hp$-Finite Element Methods for Singular Perturbations,'', Lecture Notes in Mathematics, 1796 (2002).

[8]

D. Peterseim, Generalized delaunay partitions and composite material modeling, preprint,, DFG Research Center Matheon Berlin, 690 (2010).

[9]

D. Peterseim, Triangulating a system of disks,, in, (2010), 241.

[10]

D. Peterseim and C. Carstensen, Finite element network approximation of conductivity in particle composites,, preprint, 807 (2010).

[1]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[2]

Feifei Tang, Suting Wei, Jun Yang. Phase transition layers for Fife-Greenlee problem on smooth bounded domain. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1527-1552. doi: 10.3934/dcds.2018063

[3]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[4]

Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks & Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

[5]

Ciro D’Apice, Umberto De Maio, Peter I. Kogut. Boundary velocity suboptimal control of incompressible flow in cylindrically perforated domain. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 283-314. doi: 10.3934/dcdsb.2009.11.283

[6]

Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks & Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361

[7]

D. Sanchez. Boundary layer on a high-conductivity domain. Communications on Pure & Applied Analysis, 2002, 1 (4) : 547-564. doi: 10.3934/cpaa.2002.1.547

[8]

Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947

[9]

Takashi Hara and Gordon Slade. The incipient infinite cluster in high-dimensional percolation. Electronic Research Announcements, 1998, 4: 48-55.

[10]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[11]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[12]

Mei-Qin Zhan. Finite element analysis and approximations of phase-lock equations of superconductivity. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 95-108. doi: 10.3934/dcdsb.2002.2.95

[13]

Jonathan Touboul. Erratum on: Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2018, 8 (0) : 1-2. doi: 10.3934/mcrf.2019006

[14]

Jonathan Touboul. Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2012, 2 (4) : 429-455. doi: 10.3934/mcrf.2012.2.429

[15]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[16]

Yiqiu Mao. Dynamic transitions of the Fitzhugh-Nagumo equations on a finite domain. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3935-3947. doi: 10.3934/dcdsb.2018118

[17]

Masaru Ikehata. On finding an obstacle with the Leontovich boundary condition via the time domain enclosure method. Inverse Problems & Imaging, 2017, 11 (1) : 99-123. doi: 10.3934/ipi.2017006

[18]

Siu-Long Lei. Adaptive method for spike solutions of Gierer-Meinhardt system on irregular domain. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 651-668. doi: 10.3934/dcdsb.2011.15.651

[19]

Masaru Ikehata, Mishio Kawashita. On finding a buried obstacle in a layered medium via the time domain enclosure method. Inverse Problems & Imaging, 2018, 12 (5) : 1173-1198. doi: 10.3934/ipi.2018049

[20]

Jing Xu, Xue-Cheng Tai, Li-Lian Wang. A two-level domain decomposition method for image restoration. Inverse Problems & Imaging, 2010, 4 (3) : 523-545. doi: 10.3934/ipi.2010.4.523

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]