2012, 9(2): 369-392. doi: 10.3934/mbe.2012.9.369

Optimal control of chikungunya disease: Larvae reduction, treatment and prevention

1. 

LMAH, Université du Havre, 25 rue Philippe Lebon, BP540, 76058 Le Havre Cedex, France, France

2. 

Department of Mathematics, Inha University, Incheon, 402-751

Received  April 2011 Revised  December 2011 Published  March 2012

Since the 1980s, there has been a worldwide re-emergence of vector-borne diseases including Malaria, Dengue, Yellow fever or, more recently, chikungunya. These viruses are arthropod-borne viruses (arboviruses) transmitted by arthropods like mosquitoes of Aedes genus. The nature of these arboviruses is complex since it conjugates human, environmental, biological and geographical factors. Recent researchs have suggested, in particular during the Réunion Island epidemic in 2006, that the transmission by Aedes albopictus (an Aedes genus specie) has been facilitated by genetic mutations of the virus and the vector capacity to adapt to non tropical regions. In this paper we formulate an optimal control problem, based on biological observations. Three main efforts are considered in order to limit the virus transmission. Indeed, there is no vaccine nor specific treatment against chikungunya, that is why the main measures to limit the impact of such epidemic have to be considered. Therefore, we look at time dependent breeding sites destruction, prevention and treatment efforts, for which optimal control theory is applied. Using analytical and numerical techniques, it is shown that there exist cost effective control efforts.
Citation: Djamila Moulay, M. A. Aziz-Alaoui, Hee-Dae Kwon. Optimal control of chikungunya disease: Larvae reduction, treatment and prevention. Mathematical Biosciences & Engineering, 2012, 9 (2) : 369-392. doi: 10.3934/mbe.2012.9.369
References:
[1]

B. M. Adams, H. T. Banks, M. Davidian, H.-D. Kwon, H. T. Tran, S. N. Wynne and E. S. Rosenberg, HIV dynamics: Modeling, data analysis, and optimal treatment protocols,, J. Comput. Appl. Math., 184 (2005), 10. doi: 10.1016/j.cam.2005.02.004.

[2]

B. M. Adams, H. T. Banks, H.-D. Kwon and H. T. Tran, Dynamic multidrug therapies for HIV: Optimal and STI control approaches,, Mathematical Biosciences and Engineering, 1 (2004), 223. doi: 10.3934/mbe.2004.1.223.

[3]

J. Adhami and P. Reiter, Introduction and establishment of Aedes (Stegomyia) albopictus skuse (diptera : Culicidae) in Albania,, American Mosquito Control Association, 14 (1998), 340.

[4]

N. Alphey, M. B. Bonsall and L. Alphey, Modeling resistance to genetic control of insects,, Journal of Theoretical Biology, 270 (2011), 42. doi: 10.1016/j.jtbi.2010.11.016.

[5]

, Be dry with mosquitoes, 2011., Available from: \url{http://www.albopictus.eid-med.org/}., ().

[6]

N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population,, Bulletin of Mathematical Biology, 69 (2007), 1067. doi: 10.1007/s11538-006-9166-9.

[7]

M. Q. Benedict, R. S. Levine, W. A. Hawley and L. P. Lounibos, Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus,, Vector Borne and Zoonotic Diseases, 7 (2007), 76. doi: 10.1089/vbz.2006.0562.

[8]

K. Blayneh, Y. Cao and H.-D. Kwon, Optimal control of vector-borne disease: Treatment and prevention,, Discrete and Continuous Dynamical Systems Series B, 11 (2009), 587. doi: 10.3934/dcdsb.2009.11.587.

[9]

C. Cosner, J. Beier, R. Cantrell, D. Impoinvil, L. Kapitanski, M. Potts, A. Troyo and S. Ruan, The effects of human movement on the persistence of vector-borne diseases,, Journal of Theoretical Biology, 258 (2009), 550. doi: 10.1016/j.jtbi.2009.02.016.

[10]

N. Curcó, N. Gimènez, M. Serra, A. Ripoll, M. García and P. Vives, Asian tiger mosquito bites: Perception of the affected population after Aedes albopictus became established in Spain,, Actas Dermo-Sifiliogràficas (English Edition), 99 (2008), 708.

[11]

T. Das, M. C. Jaffar-Bandjee, J. J. Hoarau, P. K. Trotot, M. Denizot, G. Lee-Pat-Yuen, R. Sahoo, P. Guiraud, D. Ramful, S. Robin, J. L. Alessandri, B. A. Gauzere and P. Gasque, Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus,, Progress in Neurobiology, 91 (2010), 121. doi: 10.1016/j.pneurobio.2009.12.006.

[12]

H. Delatte, G. Gimonneau, A. Triboire and D.Fontenille, Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean,, Journal of Medical Entomology, 46 (2009), 33. doi: 10.1603/033.046.0105.

[13]

H. Delatte, C. Paupy, J. S. Dehecq, J. Thiria, A. B. Failloux and D. Fontenille, Aedes albopictus, vector of chikungunya and dengue viruses in reunion island: Biology and control,, Parasite, 15 (2008), 3.

[14]

E. Depoortere, S. Salmaso, M. Pompa, P. Guglielmetti and D. Coulombier, Chikungunya in Europe,, The Lancet, 371 (2008), 723.

[15]

M. Diallo, J. Thonnon, M. Traore-Lamizana and D. Fontenille, Vectors of chikungunya virus in Senegal: Current data and transmission cycles,, The American Journal of Tropical Medicine and Hygiene, 60 (1999), 281.

[16]

O. Diekmann and J .A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation,", Wiley Series in Mathematical and Computational Biology, (2000).

[17]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6.

[18]

M. Dubrulle, L. Mousson, S. Moutailler, M. Vazeille and A. B. Failloux, Chikungunya virus and Aedes mosquitoes: Saliva is infectious as soon as two days after oral infection,, PLoS ONE, 4 (2009). doi: 10.1371/journal.pone.0005895.

[19]

Y. Dumont and F. Chiroleu, Vector control for the chikungunya disease,, Mathematical Biosciences and Engineering, 7 (2010), 313. doi: 10.3934/mbe.2010.7.313.

[20]

Y. Dumont, F. Chiroleu and C. Domerg, On a temporal model for the chikungunya disease: Modeling, theory and numerics,, Mathematical Biosciences, 213 (2008), 80. doi: 10.1016/j.mbs.2008.02.008.

[21]

M. Enserink, Epidemiology: Tropical disease follows mosquitoes to Europe,, Science, 317 (2007). doi: 10.1126/science.317.5844.1485a.

[22]

L. Esteva and C. Vargas, A model for dengue disease with variable human population,, Journal of Mathematical Biology, 38 (1999), 220. doi: 10.1007/s002850050147.

[23]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,", Applications of Mathematics, (1975).

[24]

P. J. Gullan and P. Cranston, "The Insects: An Outline of Entomology," 4th edition,, Wiley-Blackwell, (2010).

[25]

M. G. Guzman and G. Kouri, Dengue and dengue hemorrhagic fever in the Americas: Lessons and challenges,, Journal of Clinical Virology, 27 (2003), 1. doi: 10.1016/S1386-6532(03)00010-6.

[26]

W. A. Hawley, The biology of Aedes albopictus,, J. Am. Mosq. Control Assoc. Suppl., 1 (1988), 1.

[27]

H. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599. doi: 10.1137/S0036144500371907.

[28]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete and Continuous Dynamical Systems Series B, 2 (2002), 473. doi: 10.3934/dcdsb.2002.2.473.

[29]

K. Laras, N. C. Sukri, R. P. Larasati, M. J. Bangs, R. Kosim, Djauzi, T. Wandra, J. Master, H. Kosasih, S. Hartati, C. Beckett, E. R. Sedyaningsih, H. J. Beecham III and A. L. Corwin, Tracking the re-emergence of epidemic chikungunya virus in Indonesia,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 99 (2005), 128. doi: 10.1016/j.trstmh.2004.03.013.

[30]

D. L. Lukes, "Differential Equations. Classical to Controlled,", Mathematics in Science and Engineering, 162 (1982).

[31]

W. H. R. Lumdsen, An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952-1953. II. General description and epidemiology,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 49 (1955), 23.

[32]

C. J. Mitchell, Geographic spread of Aedes albopictus and potential for involvement in arbovirus cycles in the Mediterranean basin,, Journal of Vector Ecology, 20 (1995), 44.

[33]

D. Moulay, M. A. Aziz-Alaoui and M. Cadivel, The chikungunya disease: Modeling, vector and transmission global dynamics,, Mathematical Biosciences, 229 (2011), 50. doi: 10.1016/j.mbs.2010.10.008.

[34]

C. Paupy, H. Delatte, L. Bagny, V. Corbel and D. Fontenille, Aedes albopictus, an arbovirus vector: From the darkness to the light,, Microbes and Infection, 11 (2009), 1177. doi: 10.1016/j.micinf.2009.05.005.

[35]

G. Pialoux, B. A. Gaüzère and M. Strobel, Infection à virus chikungunya: Revue générale par temps d'épidémie,, Médecine et Maladies Infectieuses, 36 (2006), 253. doi: 10.1016/j.medmal.2006.04.002.

[36]

L. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mishchenko, "The Mathematical Theory of Optimal Processes,", A Pergamon Press Book, (1964).

[37]

S. Rajapakse, C. Rodrigo and A. Rajapakse, Atypical manifestations of chikungunya infection,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 104 (2010), 89. doi: 10.1016/j.trstmh.2009.07.031.

[38]

G. Rezza, L. Nicoletti, R. Angelini, R. Romi, A. Finarelli, M. Panning, P. Cordioli, C. Fortuna, S. Boros, F. Magurano, G. Silvi, P. Angelini, M. Dottori, M. Ciufolini, G. Majori and A. Cassone, Infection with chikungunya virus in Italy: An outbreak in a temperate region,, The Lancet, 370 (2007), 1840. doi: 10.1016/S0140-6736(07)61779-6.

[39]

M. C. Robinson, An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952-53. I. Clinical features,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 49 (1955), 28. doi: 10.1016/0035-9203(55)90080-8.

[40]

R. W. Ross, The newala epidemic. III. The virus: Isolation, pathogenic properties and relationship to the epidemic,, Epidemiology and Infection, 54 (1956), 177.

[41]

T. Seyler, Y. Hutin, V. Ramanchandran, R. Ramakrishnan, P. Manickam and M. Murhekar, Estimating the burden of disease and the economic cost attributable to chikungunya, Andhra Pradesh, India, 2005-2006,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 104 (2010), 133. doi: 10.1016/j.trstmh.2009.07.014.

[42]

D. Sissoko, D. Malvy, C. Giry, G. Delmas, C. Paquet, P. Gabrie, F. Pettinelli, M. A. Sanquer and V. Pierre, Outbreak of chikungunya fever in Mayotte, Comoros Archipelago, 2005-2006,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 102 (2008), 780. doi: 10.1016/j.trstmh.2008.02.018.

[43]

A. B. Sudeep and D. Parashar, Chikungunya: An overview,, Journal of Biosciences, 33 (2008), 443.

[44]

B. V. Tandale, P. S. Sathe, V. A. Arankalle, R. Wadia, R. Kulkarni, S. V. Shah, S. K. Shah, J. K. Sheth, A. Sudeep, A. S. Tripathy and A. C. Mishra, Systemic involvements and fatalities during chikungunya epidemic in India, 2006,, Journal of Clinical Virology, 46 (2009), 145.

[45]

R. C. Thomé, H. M. Yang and L. Esteva, Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide,, Mathematical Biosciences, 223 (2010), 12. doi: 10.1016/j.mbs.2009.08.009.

[46]

M. Vazeille, C. Jeannin, E. Martin, F. Schaffner and A. B. Failloux, Chikungunya: A risk for Mediterranean countries,, Acta Tropica, 105 (2008), 200. doi: 10.1016/j.actatropica.2007.09.009.

[47]

World-Health-Organization, Dengue and severe dengue,, factsheet no. 117, (2008).

[48]

H. M. Yang and C. P. Ferreira, Assessing the effects of vector control on dengue transmission,, Applied Mathematics and Computation, 198 (2008), 401. doi: 10.1016/j.amc.2007.08.046.

show all references

References:
[1]

B. M. Adams, H. T. Banks, M. Davidian, H.-D. Kwon, H. T. Tran, S. N. Wynne and E. S. Rosenberg, HIV dynamics: Modeling, data analysis, and optimal treatment protocols,, J. Comput. Appl. Math., 184 (2005), 10. doi: 10.1016/j.cam.2005.02.004.

[2]

B. M. Adams, H. T. Banks, H.-D. Kwon and H. T. Tran, Dynamic multidrug therapies for HIV: Optimal and STI control approaches,, Mathematical Biosciences and Engineering, 1 (2004), 223. doi: 10.3934/mbe.2004.1.223.

[3]

J. Adhami and P. Reiter, Introduction and establishment of Aedes (Stegomyia) albopictus skuse (diptera : Culicidae) in Albania,, American Mosquito Control Association, 14 (1998), 340.

[4]

N. Alphey, M. B. Bonsall and L. Alphey, Modeling resistance to genetic control of insects,, Journal of Theoretical Biology, 270 (2011), 42. doi: 10.1016/j.jtbi.2010.11.016.

[5]

, Be dry with mosquitoes, 2011., Available from: \url{http://www.albopictus.eid-med.org/}., ().

[6]

N. Bacaër, Approximation of the basic reproduction number $R_0$ for vector-borne diseases with a periodic vector population,, Bulletin of Mathematical Biology, 69 (2007), 1067. doi: 10.1007/s11538-006-9166-9.

[7]

M. Q. Benedict, R. S. Levine, W. A. Hawley and L. P. Lounibos, Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus,, Vector Borne and Zoonotic Diseases, 7 (2007), 76. doi: 10.1089/vbz.2006.0562.

[8]

K. Blayneh, Y. Cao and H.-D. Kwon, Optimal control of vector-borne disease: Treatment and prevention,, Discrete and Continuous Dynamical Systems Series B, 11 (2009), 587. doi: 10.3934/dcdsb.2009.11.587.

[9]

C. Cosner, J. Beier, R. Cantrell, D. Impoinvil, L. Kapitanski, M. Potts, A. Troyo and S. Ruan, The effects of human movement on the persistence of vector-borne diseases,, Journal of Theoretical Biology, 258 (2009), 550. doi: 10.1016/j.jtbi.2009.02.016.

[10]

N. Curcó, N. Gimènez, M. Serra, A. Ripoll, M. García and P. Vives, Asian tiger mosquito bites: Perception of the affected population after Aedes albopictus became established in Spain,, Actas Dermo-Sifiliogràficas (English Edition), 99 (2008), 708.

[11]

T. Das, M. C. Jaffar-Bandjee, J. J. Hoarau, P. K. Trotot, M. Denizot, G. Lee-Pat-Yuen, R. Sahoo, P. Guiraud, D. Ramful, S. Robin, J. L. Alessandri, B. A. Gauzere and P. Gasque, Chikungunya fever: CNS infection and pathologies of a re-emerging arbovirus,, Progress in Neurobiology, 91 (2010), 121. doi: 10.1016/j.pneurobio.2009.12.006.

[12]

H. Delatte, G. Gimonneau, A. Triboire and D.Fontenille, Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean,, Journal of Medical Entomology, 46 (2009), 33. doi: 10.1603/033.046.0105.

[13]

H. Delatte, C. Paupy, J. S. Dehecq, J. Thiria, A. B. Failloux and D. Fontenille, Aedes albopictus, vector of chikungunya and dengue viruses in reunion island: Biology and control,, Parasite, 15 (2008), 3.

[14]

E. Depoortere, S. Salmaso, M. Pompa, P. Guglielmetti and D. Coulombier, Chikungunya in Europe,, The Lancet, 371 (2008), 723.

[15]

M. Diallo, J. Thonnon, M. Traore-Lamizana and D. Fontenille, Vectors of chikungunya virus in Senegal: Current data and transmission cycles,, The American Journal of Tropical Medicine and Hygiene, 60 (1999), 281.

[16]

O. Diekmann and J .A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation,", Wiley Series in Mathematical and Computational Biology, (2000).

[17]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Mathematical Biosciences, 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6.

[18]

M. Dubrulle, L. Mousson, S. Moutailler, M. Vazeille and A. B. Failloux, Chikungunya virus and Aedes mosquitoes: Saliva is infectious as soon as two days after oral infection,, PLoS ONE, 4 (2009). doi: 10.1371/journal.pone.0005895.

[19]

Y. Dumont and F. Chiroleu, Vector control for the chikungunya disease,, Mathematical Biosciences and Engineering, 7 (2010), 313. doi: 10.3934/mbe.2010.7.313.

[20]

Y. Dumont, F. Chiroleu and C. Domerg, On a temporal model for the chikungunya disease: Modeling, theory and numerics,, Mathematical Biosciences, 213 (2008), 80. doi: 10.1016/j.mbs.2008.02.008.

[21]

M. Enserink, Epidemiology: Tropical disease follows mosquitoes to Europe,, Science, 317 (2007). doi: 10.1126/science.317.5844.1485a.

[22]

L. Esteva and C. Vargas, A model for dengue disease with variable human population,, Journal of Mathematical Biology, 38 (1999), 220. doi: 10.1007/s002850050147.

[23]

W. H. Fleming and R. W. Rishel, "Deterministic and Stochastic Optimal Control,", Applications of Mathematics, (1975).

[24]

P. J. Gullan and P. Cranston, "The Insects: An Outline of Entomology," 4th edition,, Wiley-Blackwell, (2010).

[25]

M. G. Guzman and G. Kouri, Dengue and dengue hemorrhagic fever in the Americas: Lessons and challenges,, Journal of Clinical Virology, 27 (2003), 1. doi: 10.1016/S1386-6532(03)00010-6.

[26]

W. A. Hawley, The biology of Aedes albopictus,, J. Am. Mosq. Control Assoc. Suppl., 1 (1988), 1.

[27]

H. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599. doi: 10.1137/S0036144500371907.

[28]

E. Jung, S. Lenhart and Z. Feng, Optimal control of treatments in a two-strain tuberculosis model,, Discrete and Continuous Dynamical Systems Series B, 2 (2002), 473. doi: 10.3934/dcdsb.2002.2.473.

[29]

K. Laras, N. C. Sukri, R. P. Larasati, M. J. Bangs, R. Kosim, Djauzi, T. Wandra, J. Master, H. Kosasih, S. Hartati, C. Beckett, E. R. Sedyaningsih, H. J. Beecham III and A. L. Corwin, Tracking the re-emergence of epidemic chikungunya virus in Indonesia,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 99 (2005), 128. doi: 10.1016/j.trstmh.2004.03.013.

[30]

D. L. Lukes, "Differential Equations. Classical to Controlled,", Mathematics in Science and Engineering, 162 (1982).

[31]

W. H. R. Lumdsen, An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952-1953. II. General description and epidemiology,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 49 (1955), 23.

[32]

C. J. Mitchell, Geographic spread of Aedes albopictus and potential for involvement in arbovirus cycles in the Mediterranean basin,, Journal of Vector Ecology, 20 (1995), 44.

[33]

D. Moulay, M. A. Aziz-Alaoui and M. Cadivel, The chikungunya disease: Modeling, vector and transmission global dynamics,, Mathematical Biosciences, 229 (2011), 50. doi: 10.1016/j.mbs.2010.10.008.

[34]

C. Paupy, H. Delatte, L. Bagny, V. Corbel and D. Fontenille, Aedes albopictus, an arbovirus vector: From the darkness to the light,, Microbes and Infection, 11 (2009), 1177. doi: 10.1016/j.micinf.2009.05.005.

[35]

G. Pialoux, B. A. Gaüzère and M. Strobel, Infection à virus chikungunya: Revue générale par temps d'épidémie,, Médecine et Maladies Infectieuses, 36 (2006), 253. doi: 10.1016/j.medmal.2006.04.002.

[36]

L. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mishchenko, "The Mathematical Theory of Optimal Processes,", A Pergamon Press Book, (1964).

[37]

S. Rajapakse, C. Rodrigo and A. Rajapakse, Atypical manifestations of chikungunya infection,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 104 (2010), 89. doi: 10.1016/j.trstmh.2009.07.031.

[38]

G. Rezza, L. Nicoletti, R. Angelini, R. Romi, A. Finarelli, M. Panning, P. Cordioli, C. Fortuna, S. Boros, F. Magurano, G. Silvi, P. Angelini, M. Dottori, M. Ciufolini, G. Majori and A. Cassone, Infection with chikungunya virus in Italy: An outbreak in a temperate region,, The Lancet, 370 (2007), 1840. doi: 10.1016/S0140-6736(07)61779-6.

[39]

M. C. Robinson, An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952-53. I. Clinical features,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 49 (1955), 28. doi: 10.1016/0035-9203(55)90080-8.

[40]

R. W. Ross, The newala epidemic. III. The virus: Isolation, pathogenic properties and relationship to the epidemic,, Epidemiology and Infection, 54 (1956), 177.

[41]

T. Seyler, Y. Hutin, V. Ramanchandran, R. Ramakrishnan, P. Manickam and M. Murhekar, Estimating the burden of disease and the economic cost attributable to chikungunya, Andhra Pradesh, India, 2005-2006,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 104 (2010), 133. doi: 10.1016/j.trstmh.2009.07.014.

[42]

D. Sissoko, D. Malvy, C. Giry, G. Delmas, C. Paquet, P. Gabrie, F. Pettinelli, M. A. Sanquer and V. Pierre, Outbreak of chikungunya fever in Mayotte, Comoros Archipelago, 2005-2006,, Transactions of the Royal Society of Tropical Medicine and Hygiene, 102 (2008), 780. doi: 10.1016/j.trstmh.2008.02.018.

[43]

A. B. Sudeep and D. Parashar, Chikungunya: An overview,, Journal of Biosciences, 33 (2008), 443.

[44]

B. V. Tandale, P. S. Sathe, V. A. Arankalle, R. Wadia, R. Kulkarni, S. V. Shah, S. K. Shah, J. K. Sheth, A. Sudeep, A. S. Tripathy and A. C. Mishra, Systemic involvements and fatalities during chikungunya epidemic in India, 2006,, Journal of Clinical Virology, 46 (2009), 145.

[45]

R. C. Thomé, H. M. Yang and L. Esteva, Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide,, Mathematical Biosciences, 223 (2010), 12. doi: 10.1016/j.mbs.2009.08.009.

[46]

M. Vazeille, C. Jeannin, E. Martin, F. Schaffner and A. B. Failloux, Chikungunya: A risk for Mediterranean countries,, Acta Tropica, 105 (2008), 200. doi: 10.1016/j.actatropica.2007.09.009.

[47]

World-Health-Organization, Dengue and severe dengue,, factsheet no. 117, (2008).

[48]

H. M. Yang and C. P. Ferreira, Assessing the effects of vector control on dengue transmission,, Applied Mathematics and Computation, 198 (2008), 401. doi: 10.1016/j.amc.2007.08.046.

[1]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[2]

Kbenesh Blayneh, Yanzhao Cao, Hee-Dae Kwon. Optimal control of vector-borne diseases: Treatment and prevention. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 587-611. doi: 10.3934/dcdsb.2009.11.587

[3]

Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049

[4]

Xinli Hu, Yansheng Liu, Jianhong Wu. Culling structured hosts to eradicate vector-borne diseases. Mathematical Biosciences & Engineering, 2009, 6 (2) : 301-319. doi: 10.3934/mbe.2009.6.301

[5]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[6]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[7]

Folashade B. Agusto. Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 687-715. doi: 10.3934/dcdsb.2017034

[8]

Qingkai Kong, Zhipeng Qiu, Zi Sang, Yun Zou. Optimal control of a vector-host epidemics model. Mathematical Control & Related Fields, 2011, 1 (4) : 493-508. doi: 10.3934/mcrf.2011.1.493

[9]

Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633

[10]

Holly Gaff. Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463-473. doi: 10.3934/mbe.2011.8.463

[11]

Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567

[12]

Bruno Buonomo, Eleonora Messina. Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study. Mathematical Biosciences & Engineering, 2012, 9 (3) : 539-552. doi: 10.3934/mbe.2012.9.539

[13]

Mary P. Hebert, Linda J. S. Allen. Disease outbreaks in plant-vector-virus models with vector aggregation and dispersal. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2169-2191. doi: 10.3934/dcdsb.2016042

[14]

Zengji Du, Zhaosheng Feng. Existence and asymptotic behaviors of traveling waves of a modified vector-disease model. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1899-1920. doi: 10.3934/cpaa.2018090

[15]

Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091

[16]

K. Schittkowski. Optimal parameter selection in support vector machines. Journal of Industrial & Management Optimization, 2005, 1 (4) : 465-476. doi: 10.3934/jimo.2005.1.465

[17]

Thalya Burden, Jon Ernstberger, K. Renee Fister. Optimal control applied to immunotherapy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 135-146. doi: 10.3934/dcdsb.2004.4.135

[18]

Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578

[19]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[20]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]