2012, 32(8): 2937-2950. doi: 10.3934/dcds.2012.32.2937

Why optimal states recruit fewer reactions in metabolic networks

1. 

Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, United States

2. 

Department of Mathematics, Clarkson University, Potsdam, NY 13699, United States

3. 

Department of Physics & Astronomy and Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, United States

Received  May 2011 Revised  August 2011 Published  March 2012

The metabolic network of a living cell involves several hundreds or thousands of interconnected biochemical reactions. Previous research has shown that under realistic conditions only a fraction of these reactions is concurrently active in any given cell. This is partially determined by nutrient availability, but is also strongly dependent on the metabolic function and network structure. Here, we establish rigorous bounds showing that the fraction of active reactions is smaller (rather than larger) in metabolic networks evolved or engineered to optimize a specific metabolic task, and we show that this is largely determined by the presence of thermodynamically irreversible reactions in the network. We also show that the inactivation of a certain number of reactions determined by irreversibility can generate a cascade of secondary reaction inactivations that propagates through the network. The mathematical results are complemented with numerical simulations of the metabolic networks of the bacterium Escherichia coli and of human cells, which show, counterintuitively, that even the maximization of the total reaction flux in the network leads to a reduced number of active reactions.
Citation: Joo Sang Lee, Takashi Nishikawa, Adilson E. Motter. Why optimal states recruit fewer reactions in metabolic networks. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2937-2950. doi: 10.3934/dcds.2012.32.2937
References:
[1]

U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).

[2]

A.-L. Barabási and Z. N. Oltvai, Network biology: Understanding the cell's functional organization,, Nat. Rev. Genet., 5 (2004), 101.

[3]

S. D. Becker, et al., Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox,, Nat. Protoc., 2 (2007), 727. doi: 10.1038/nprot.2007.99.

[4]

M. J. Best and K. Ritter, "Linear Programming: Active Set Analysis and Computer Programs,", Prentice-Hall, (1985).

[5]

L. M. Blank, L. Kuepfer and U. Sauer, Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast,, Genome Biol., 6 (2005). doi: 10.1186/gb-2005-6-6-r49.

[6]

H. P. J. Bonarius, G. Schmid and J. Tramper, Flux analysis of underdetermined metabolic networks: The quest for the missing constraints,, Trends Biotechnol., 15 (1997), 308. doi: 10.1016/S0167-7799(97)01067-6.

[7]

S. P. Cornelius, J. S. Lee and A. E. Motter, Dispensability of Escherichia coli's latent pathways,, Proc. Natl. Acad. Sci. USA, 108 (2011), 3124. doi: 10.1073/pnas.1009772108.

[8]

N. C. Duarte, et al., Global reconstruction of the human metabolic network based on genomic and bibliomic data,, Proc. Natl. Acad. Sci. USA, 104 (2007), 1777. doi: 10.1073/pnas.0610772104.

[9]

S. S. Fong, A. R. Joyce and B. Ø. Palsson, Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states,, Genome. Res., 15 (2005), 1365. doi: 10.1101/gr.3832305.

[10]

S. S. Fong, A. Nanchen, B. Ø. Palsson and U. Sauer, Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes,, J. Biol. Chem., 281 (2006), 8024. doi: 10.1074/jbc.M510016200.

[11]

, ILOG CPLEX (Version 10.2.0)., Available from: \url{http://www.ilog.com/products/cplex/}., ().

[12]

D. E. Kaufman and R. L. Smith, Direction choice for accelerated convergence in hit-and-run sampling,, Oper. Res., 46 (1998), 84. doi: 10.1287/opre.46.1.84.

[13]

D.-H. Kim and A. E. Motter, Slave nodes and the controllability of metabolic networks,, New J. Phys., 11 (2009). doi: 10.1088/1367-2630/11/11/113047.

[14]

M. V. Kritz, M. T. dos Santos, S. Urrutia and J.-M. Schwartz, Organising metabolic networks: Cycles in flux distributions,, J. Theo. Biol., 265 (2010), 250. doi: 10.1016/j.jtbi.2010.04.026.

[15]

O. L. Mangasarian, Uniqueness of solution in linear programming,, Linear Algebra Appl., 25 (1979), 151. doi: 10.1016/0024-3795(79)90014-4.

[16]

A. E. Motter, Improved network performance via antagonism: From synthetic rescues to multi-drug combinations,, BioEssays, 32 (2010), 236. doi: 10.1002/bies.200900128.

[17]

A. E. Motter, N. Gulbahce, E. Almaas and A.-L. Barabási, Predicting synthetic rescues in metabolic networks,, Mol. Syst. Biol., 4 (2008). doi: 10.1038/msb.2008.1.

[18]

T. Nishikawa, N. Gulbahce and A. E. Motter, Spontaneous reaction silencing in metabolic optimization,, PLoS Comput. Biol., 4 (2008). doi: 10.1371/journal.pcbi.1000236.

[19]

B. Papp, C. Pál and L. D. Hurst, Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast,, Nature, 429 (2004), 661. doi: 10.1038/nature02636.

[20]

B. Ø. Palsson, "Systems Biology: Properties of Reconstructed Networks,", Cambridge University Press, (2006).

[21]

E. Ravasz, A. Somera, D. Mongru, Z. Oltvai and A.-L. Barabási, Hierarchical organization of modularity in metabolic networks,, Science, 297 (2002), 1551. doi: 10.1126/science.1073374.

[22]

J. L. Reed, T. D. Vo, C. H. Schilling and B. Ø. Palsson, An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR),, Genome Biol., 4 (2003). doi: 10.1186/gb-2003-4-9-r54.

[23]

W. Rudin, "Real and Complex Analysis,'', Third edition, (1987).

[24]

R. Schuetz, L. Kuepfer and U. Sauer, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli,, Mol. Syst. Biol., 3 (2007). doi: 10.1038/msb4100162.

[25]

T. Shlomi, T. Benyamini, E. Gottlieb, R. Sharan and E. Ruppin, Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect,, PLoS Comput. Biol., 7 (2011). doi: 10.1371/journal.pcbi.1002018.

[26]

R. L. Smith, Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions,, Oper. Res., 32 (1984), 1296. doi: 10.1287/opre.32.6.1296.

[27]

V. Spirin and L. A. Mirny, Protein complexes and functional modules in molecular networks,, Proc. Natl. Acad. Sci. USA, 100 (2003), 12123. doi: 10.1073/pnas.2032324100.

[28]

P. Szilágyi, On the uniqueness of the optimal solution in linear programming,, Rev. Anal. Numér. Théor. Approx., 35 (2006), 225.

[29]

A. Varma and B. Ø. Palsson, Metabolic flux balancing: Basic concepts, scientific and practical use,, Nat. Biotechnol., 12 (1994), 994. doi: 10.1038/nbt1094-994.

show all references

References:
[1]

U. Alon, "An Introduction to Systems Biology: Design Principles of Biological Circuits,", Chapman & Hall/CRC Mathematical and Computational Biology Series, (2007).

[2]

A.-L. Barabási and Z. N. Oltvai, Network biology: Understanding the cell's functional organization,, Nat. Rev. Genet., 5 (2004), 101.

[3]

S. D. Becker, et al., Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox,, Nat. Protoc., 2 (2007), 727. doi: 10.1038/nprot.2007.99.

[4]

M. J. Best and K. Ritter, "Linear Programming: Active Set Analysis and Computer Programs,", Prentice-Hall, (1985).

[5]

L. M. Blank, L. Kuepfer and U. Sauer, Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast,, Genome Biol., 6 (2005). doi: 10.1186/gb-2005-6-6-r49.

[6]

H. P. J. Bonarius, G. Schmid and J. Tramper, Flux analysis of underdetermined metabolic networks: The quest for the missing constraints,, Trends Biotechnol., 15 (1997), 308. doi: 10.1016/S0167-7799(97)01067-6.

[7]

S. P. Cornelius, J. S. Lee and A. E. Motter, Dispensability of Escherichia coli's latent pathways,, Proc. Natl. Acad. Sci. USA, 108 (2011), 3124. doi: 10.1073/pnas.1009772108.

[8]

N. C. Duarte, et al., Global reconstruction of the human metabolic network based on genomic and bibliomic data,, Proc. Natl. Acad. Sci. USA, 104 (2007), 1777. doi: 10.1073/pnas.0610772104.

[9]

S. S. Fong, A. R. Joyce and B. Ø. Palsson, Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states,, Genome. Res., 15 (2005), 1365. doi: 10.1101/gr.3832305.

[10]

S. S. Fong, A. Nanchen, B. Ø. Palsson and U. Sauer, Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes,, J. Biol. Chem., 281 (2006), 8024. doi: 10.1074/jbc.M510016200.

[11]

, ILOG CPLEX (Version 10.2.0)., Available from: \url{http://www.ilog.com/products/cplex/}., ().

[12]

D. E. Kaufman and R. L. Smith, Direction choice for accelerated convergence in hit-and-run sampling,, Oper. Res., 46 (1998), 84. doi: 10.1287/opre.46.1.84.

[13]

D.-H. Kim and A. E. Motter, Slave nodes and the controllability of metabolic networks,, New J. Phys., 11 (2009). doi: 10.1088/1367-2630/11/11/113047.

[14]

M. V. Kritz, M. T. dos Santos, S. Urrutia and J.-M. Schwartz, Organising metabolic networks: Cycles in flux distributions,, J. Theo. Biol., 265 (2010), 250. doi: 10.1016/j.jtbi.2010.04.026.

[15]

O. L. Mangasarian, Uniqueness of solution in linear programming,, Linear Algebra Appl., 25 (1979), 151. doi: 10.1016/0024-3795(79)90014-4.

[16]

A. E. Motter, Improved network performance via antagonism: From synthetic rescues to multi-drug combinations,, BioEssays, 32 (2010), 236. doi: 10.1002/bies.200900128.

[17]

A. E. Motter, N. Gulbahce, E. Almaas and A.-L. Barabási, Predicting synthetic rescues in metabolic networks,, Mol. Syst. Biol., 4 (2008). doi: 10.1038/msb.2008.1.

[18]

T. Nishikawa, N. Gulbahce and A. E. Motter, Spontaneous reaction silencing in metabolic optimization,, PLoS Comput. Biol., 4 (2008). doi: 10.1371/journal.pcbi.1000236.

[19]

B. Papp, C. Pál and L. D. Hurst, Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast,, Nature, 429 (2004), 661. doi: 10.1038/nature02636.

[20]

B. Ø. Palsson, "Systems Biology: Properties of Reconstructed Networks,", Cambridge University Press, (2006).

[21]

E. Ravasz, A. Somera, D. Mongru, Z. Oltvai and A.-L. Barabási, Hierarchical organization of modularity in metabolic networks,, Science, 297 (2002), 1551. doi: 10.1126/science.1073374.

[22]

J. L. Reed, T. D. Vo, C. H. Schilling and B. Ø. Palsson, An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR),, Genome Biol., 4 (2003). doi: 10.1186/gb-2003-4-9-r54.

[23]

W. Rudin, "Real and Complex Analysis,'', Third edition, (1987).

[24]

R. Schuetz, L. Kuepfer and U. Sauer, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli,, Mol. Syst. Biol., 3 (2007). doi: 10.1038/msb4100162.

[25]

T. Shlomi, T. Benyamini, E. Gottlieb, R. Sharan and E. Ruppin, Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect,, PLoS Comput. Biol., 7 (2011). doi: 10.1371/journal.pcbi.1002018.

[26]

R. L. Smith, Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions,, Oper. Res., 32 (1984), 1296. doi: 10.1287/opre.32.6.1296.

[27]

V. Spirin and L. A. Mirny, Protein complexes and functional modules in molecular networks,, Proc. Natl. Acad. Sci. USA, 100 (2003), 12123. doi: 10.1073/pnas.2032324100.

[28]

P. Szilágyi, On the uniqueness of the optimal solution in linear programming,, Rev. Anal. Numér. Théor. Approx., 35 (2006), 225.

[29]

A. Varma and B. Ø. Palsson, Metabolic flux balancing: Basic concepts, scientific and practical use,, Nat. Biotechnol., 12 (1994), 994. doi: 10.1038/nbt1094-994.

[1]

Daniela Calvetti, Jenni Heino, Erkki Somersalo, Knarik Tunyan. Bayesian stationary state flux balance analysis for a skeletal muscle metabolic model. Inverse Problems & Imaging, 2007, 1 (2) : 247-263. doi: 10.3934/ipi.2007.1.247

[2]

Emma Smith, Volker Rehbock, Norm Adams. Deterministic modeling of whole-body sheep metabolism. Journal of Industrial & Management Optimization, 2009, 5 (1) : 61-80. doi: 10.3934/jimo.2009.5.61

[3]

Ying Sue Huang, Chai Wah Wu. Stability of cellular neural network with small delays. Conference Publications, 2005, 2005 (Special) : 420-426. doi: 10.3934/proc.2005.2005.420

[4]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[5]

Xinmin Yang. On symmetric and self duality in vector optimization problem. Journal of Industrial & Management Optimization, 2011, 7 (3) : 523-529. doi: 10.3934/jimo.2011.7.523

[6]

Antonio Fasano, Angiolo Farina. Modeling high flux hollow fibers dialyzers. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1903-1937. doi: 10.3934/dcdsb.2012.17.1903

[7]

Michael Frankel, Victor Roytburd, Gregory I. Sivashinsky. Dissipativity for a semi-linearized system modeling cellular flames. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 83-99. doi: 10.3934/dcdss.2011.4.83

[8]

Colette Calmelet, Diane Sepich. Surface tension and modeling of cellular intercalation during zebrafish gastrulation. Mathematical Biosciences & Engineering, 2010, 7 (2) : 259-275. doi: 10.3934/mbe.2010.7.259

[9]

Radu Ioan Boţ, Sorin-Mihai Grad. On linear vector optimization duality in infinite-dimensional spaces. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 407-415. doi: 10.3934/naco.2011.1.407

[10]

Arjuna Flenner, Gary A. Hewer, Charles S. Kenney. Two dimensional histogram analysis using the Helmholtz principle. Inverse Problems & Imaging, 2008, 2 (4) : 485-525. doi: 10.3934/ipi.2008.2.485

[11]

Marina Dolfin, Mirosław Lachowicz. Modeling opinion dynamics: How the network enhances consensus. Networks & Heterogeneous Media, 2015, 10 (4) : 877-896. doi: 10.3934/nhm.2015.10.877

[12]

A. Chauviere, T. Hillen, L. Preziosi. Modeling cell movement in anisotropic and heterogeneous network tissues. Networks & Heterogeneous Media, 2007, 2 (2) : 333-357. doi: 10.3934/nhm.2007.2.333

[13]

Alexandra Fronville, Abdoulaye Sarr, Vincent Rodin. Modelling multi-cellular growth using morphological analysis. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 83-99. doi: 10.3934/dcdsb.2017004

[14]

King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021

[15]

Yunan Wu, T. C. Edwin Cheng. Classical duality and existence results for a multi-criteria supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2009, 5 (3) : 615-628. doi: 10.3934/jimo.2009.5.615

[16]

Graziano Guerra, Michael Herty, Francesca Marcellini. Modeling and analysis of pooled stepped chutes. Networks & Heterogeneous Media, 2011, 6 (4) : 665-679. doi: 10.3934/nhm.2011.6.665

[17]

Martha Garlick, James Powell, David Eyre, Thomas Robbins. Mathematically modeling PCR: An asymptotic approximation with potential for optimization. Mathematical Biosciences & Engineering, 2010, 7 (2) : 363-384. doi: 10.3934/mbe.2010.7.363

[18]

Ahmet Sahiner, Nurullah Yilmaz, Gulden Kapusuz. A novel modeling and smoothing technique in global optimization. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-18. doi: 10.3934/jimo.2018035

[19]

Michael Herty. Modeling, simulation and optimization of gas networks with compressors. Networks & Heterogeneous Media, 2007, 2 (1) : 81-97. doi: 10.3934/nhm.2007.2.81

[20]

Mark G. Burch, Karly A. Jacobsen, Joseph H. Tien, Grzegorz A. Rempała. Network-based analysis of a small Ebola outbreak. Mathematical Biosciences & Engineering, 2017, 14 (1) : 67-77. doi: 10.3934/mbe.2017005

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (3)

[Back to Top]