• Previous Article
    Upper Hölder estimates of solutions to parametric primal and dual vector quasi-equilibria
  • JIMO Home
  • This Issue
  • Next Article
    Integrated inventory model with stochastic lead time and controllable variability for milk runs
July  2012, 8(3): 673-690. doi: 10.3934/jimo.2012.8.673

Optimal reinsurance-investment strategies for insurers under mean-CaR criteria

1. 

Lingnan (University) College, Sun Yat-sen University, Guangzhou 510275, China

2. 

Lingnan (University) College/Sun Yat-sen Business School, Sun Yat-sen University, Guangzhou 510275, China

Received  June 2011 Revised  February 2012 Published  June 2012

This paper considers an optimal reinsurance-investment problem for an insurer, who aims to minimize the risk measured by Capital-at-Risk (CaR) with the constraint that the expected terminal wealth is not less than a predefined level. The surplus of the insurer is described by a Brownian motion with drift. The insurer can control her/his risk by purchasing proportional reinsurance, acquiring new business, and investing her/his surplus in a financial market consisting of one risk-free asset and multiple risky assets. Three mean-CaR models are constructed. By transforming these models into bilevel optimization problems, we derive the explicit expressions of the optimal deterministic rebalance reinsurance-investment strategies and the mean-CaR efficient frontiers. Sensitivity analysis of the results and a numerical example are provided.
Citation: Yan Zeng, Zhongfei Li. Optimal reinsurance-investment strategies for insurers under mean-CaR criteria. Journal of Industrial & Management Optimization, 2012, 8 (3) : 673-690. doi: 10.3934/jimo.2012.8.673
References:
[1]

S. Asmussen, B. Højgaard and M. Taksar, Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation,, Finance and Stochastics, 4 (2000), 299.   Google Scholar

[2]

P. Azcue and N. Muler, Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints,, Insurance: Mathematics and Economics, 44 (2009), 26.  doi: 10.1016/j.insmatheco.2008.09.006.  Google Scholar

[3]

L. H. Bai and J. Y. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint,, Insurance: Mathematics and Economics, 42 (2008), 968.  doi: 10.1016/j.insmatheco.2007.11.002.  Google Scholar

[4]

L. H. Bai and H. Y. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers,, Mathematical Methods of Operations Research, 68 (2008), 181.  doi: 10.1007/s00186-007-0195-4.  Google Scholar

[5]

N. Bäuerle, Benchmark and mean-variance problems for insurers,, Mathematical Methods of Operations Research, 62 (2005), 159.   Google Scholar

[6]

F. Black and A. F. Perold, Theory of constant proportion portfolio insurance,, Journal of Economic Dynamics and Control, 16 (1992), 403.  doi: 10.1016/0165-1889(92)90043-E.  Google Scholar

[7]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing probability of ruin,, Mathematics of Operations Research, 20 (1995), 937.  doi: 10.1287/moor.20.4.937.  Google Scholar

[8]

Y. S. Cao and N. Q. Wan, Optimal proportional reinsurance and investment based on Hamilton-Jacobi-Bellman equation,, Insurance: Mathematics and Economics, 45 (2009), 157.  doi: 10.1016/j.insmatheco.2009.05.006.  Google Scholar

[9]

Ł. Delong and R. Gerrard, Mean-variance portfolio selection for a non-life insurance company,, Mathematical Methods of Operations Research, 66 (2007), 339.  doi: 10.1007/s00186-007-0152-2.  Google Scholar

[10]

S. Emmer, C. Klüppelberg and R. Korn, Optimal portfolio with bound downside risks,, Working paper, (2000).   Google Scholar

[11]

S. Emmer, C. Klüppelberg and R. Korn, Optimal portfolio with bounded captial at risk,, Mathematical Finance, 11 (2001), 365.  doi: 10.1111/1467-9965.00121.  Google Scholar

[12]

P. Gänssler and W. Stute, "Wahrscheinlichkeitstheorie,", Springer-Verlag, (1977).   Google Scholar

[13]

J. Grandlle, "Aspects of Risk Theory,", Springer Series in Statistics: Probability and its Applications, (1991).   Google Scholar

[14]

C. Hipp and M. Plum, Optimal investment for insurers,, Insurance: Mathematics and Economics, 27 (2000), 215.  doi: 10.1016/S0167-6687(00)00049-4.  Google Scholar

[15]

D. Iglehart, Diffusion approximations in collective risk theory,, Journal of Applied Probability, 6 (1969), 285.   Google Scholar

[16]

C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investment for insurance portfolios,, Insurance: Mathematics and Economics, 35 (2004), 21.  doi: 10.1016/j.insmatheco.2004.04.004.  Google Scholar

[17]

R. Korn, "Optimal Portfolios,", World Scientific, (1997).   Google Scholar

[18]

Z.-F. Li, K. W. Ng and X.-T. Deng, Continuous-time optimal portfolio selection using mean-CaR models,, Nonlinear Dynamics and Systems Theory, 7 (2007), 35.   Google Scholar

[19]

Z.-F. Li, Y. Zeng and Y. L. Lai, Optimal time-consistent investment and reinsurance strategies for insurers under Heston's SV model,, Insurance: Mathematics and Economics, (2011).  doi: 10.1016/j.insmatheco.2011.09.002.  Google Scholar

[20]

Z.-B. Liang, Optimal proportional reinsurance for controlled risk process which is perturbed by diffusion,, Acta Mathematicae Applicatae Sinica, 23 (2007), 477.   Google Scholar

[21]

Z.-B. Liang and J.-Y. Guo, Optimal proportional reinsurance and ruin probability,, Stochastic Models, 23 (2007), 333.  doi: 10.1080/15326340701300894.  Google Scholar

[22]

Z.-B. Liang and J.-Y. Guo, Upper bound for ruin probabilities under optimal investment and proportional reinsurance,, Applied Stochastic Models in Business and Industry, 24 (2008), 109.  doi: 10.1002/asmb.694.  Google Scholar

[23]

C. S. Liu and H. L. Yang, Optimal investment for an insurer to minimize its probability of ruin,, North American Actuarial Journal, 8 (2004), 11.   Google Scholar

[24]

S.-Z. Luo, Ruin minimization for insurers with borrowing constraints,, North American Actuarial Journal, 12 (2009), 143.   Google Scholar

[25]

S.-Z. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios,, Insurance: Mathematics and Economics, 42 (2008), 434.  doi: 10.1016/j.insmatheco.2007.04.002.  Google Scholar

[26]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time model,, Review of Economics and Statistics, 51 (1969), 247.  doi: 10.2307/1926560.  Google Scholar

[27]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model,, Journal of Economic Theory, 3 (1971), 373.   Google Scholar

[28]

A. F. Perold and W. F. Sharpe, Dynamic strategies for asset allocation,, Financial Analyst Journal, 44 (1988), 16.  doi: 10.2469/faj.v44.n1.16.  Google Scholar

[29]

S. D. Promislow and V. R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift,, North American Actuarial Journal, 9 (2005), 109.   Google Scholar

[30]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting,, Scandinavian Actuarial Journal, 1 (2001), 55.   Google Scholar

[31]

H. Schmidli, On minimizing the ruin probability by investment and reinsurance,, The Annals of Applied Probability, 12 (2002), 890.   Google Scholar

[32]

M. Taksar and C. Markussen, Optimal dynamic reinsurance policies for large insurance portfolios,, Finance and Stochastics, 7 (2003), 97.   Google Scholar

[33]

Z. W. Wang, J. M. Xia and L. H. Zhang, Optimal investment for an insurer: The martingale approach,, Insurance: Mathematics and Economics, 40 (2007), 322.  doi: 10.1016/j.insmatheco.2006.05.003.  Google Scholar

[34]

L. Xu, R. M. Wang and D. J. Yao, On maximizing the expected terminal utility by investment and reinsurance,, Journal of Industrial and Management Optimization, 4 (2008), 801.   Google Scholar

[35]

H. L. Yang and L. H. Zhang, Optimal investment for insurer with jump-diffusion risk process,, Insurance: Mathematics and Economics, 37 (2005), 615.  doi: 10.1016/j.insmatheco.2005.06.009.  Google Scholar

[36]

Y. Zeng and Z. F. Li, Optimal time-consistent investment and reinsurance policies for mean-variance insurers,, Insurance: Mathematics and Economics, 49 (2011), 145.  doi: 10.1016/j.insmatheco.2011.01.001.  Google Scholar

[37]

Y. Zeng, Z. F. Li and J. J. Liu, Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers,, Journal of Industrial and Management Optimization, 6 (2010), 483.   Google Scholar

show all references

References:
[1]

S. Asmussen, B. Højgaard and M. Taksar, Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation,, Finance and Stochastics, 4 (2000), 299.   Google Scholar

[2]

P. Azcue and N. Muler, Optimal investment strategy to minimize the ruin probability of an insurance company under borrowing constraints,, Insurance: Mathematics and Economics, 44 (2009), 26.  doi: 10.1016/j.insmatheco.2008.09.006.  Google Scholar

[3]

L. H. Bai and J. Y. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint,, Insurance: Mathematics and Economics, 42 (2008), 968.  doi: 10.1016/j.insmatheco.2007.11.002.  Google Scholar

[4]

L. H. Bai and H. Y. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers,, Mathematical Methods of Operations Research, 68 (2008), 181.  doi: 10.1007/s00186-007-0195-4.  Google Scholar

[5]

N. Bäuerle, Benchmark and mean-variance problems for insurers,, Mathematical Methods of Operations Research, 62 (2005), 159.   Google Scholar

[6]

F. Black and A. F. Perold, Theory of constant proportion portfolio insurance,, Journal of Economic Dynamics and Control, 16 (1992), 403.  doi: 10.1016/0165-1889(92)90043-E.  Google Scholar

[7]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing probability of ruin,, Mathematics of Operations Research, 20 (1995), 937.  doi: 10.1287/moor.20.4.937.  Google Scholar

[8]

Y. S. Cao and N. Q. Wan, Optimal proportional reinsurance and investment based on Hamilton-Jacobi-Bellman equation,, Insurance: Mathematics and Economics, 45 (2009), 157.  doi: 10.1016/j.insmatheco.2009.05.006.  Google Scholar

[9]

Ł. Delong and R. Gerrard, Mean-variance portfolio selection for a non-life insurance company,, Mathematical Methods of Operations Research, 66 (2007), 339.  doi: 10.1007/s00186-007-0152-2.  Google Scholar

[10]

S. Emmer, C. Klüppelberg and R. Korn, Optimal portfolio with bound downside risks,, Working paper, (2000).   Google Scholar

[11]

S. Emmer, C. Klüppelberg and R. Korn, Optimal portfolio with bounded captial at risk,, Mathematical Finance, 11 (2001), 365.  doi: 10.1111/1467-9965.00121.  Google Scholar

[12]

P. Gänssler and W. Stute, "Wahrscheinlichkeitstheorie,", Springer-Verlag, (1977).   Google Scholar

[13]

J. Grandlle, "Aspects of Risk Theory,", Springer Series in Statistics: Probability and its Applications, (1991).   Google Scholar

[14]

C. Hipp and M. Plum, Optimal investment for insurers,, Insurance: Mathematics and Economics, 27 (2000), 215.  doi: 10.1016/S0167-6687(00)00049-4.  Google Scholar

[15]

D. Iglehart, Diffusion approximations in collective risk theory,, Journal of Applied Probability, 6 (1969), 285.   Google Scholar

[16]

C. Irgens and J. Paulsen, Optimal control of risk exposure, reinsurance and investment for insurance portfolios,, Insurance: Mathematics and Economics, 35 (2004), 21.  doi: 10.1016/j.insmatheco.2004.04.004.  Google Scholar

[17]

R. Korn, "Optimal Portfolios,", World Scientific, (1997).   Google Scholar

[18]

Z.-F. Li, K. W. Ng and X.-T. Deng, Continuous-time optimal portfolio selection using mean-CaR models,, Nonlinear Dynamics and Systems Theory, 7 (2007), 35.   Google Scholar

[19]

Z.-F. Li, Y. Zeng and Y. L. Lai, Optimal time-consistent investment and reinsurance strategies for insurers under Heston's SV model,, Insurance: Mathematics and Economics, (2011).  doi: 10.1016/j.insmatheco.2011.09.002.  Google Scholar

[20]

Z.-B. Liang, Optimal proportional reinsurance for controlled risk process which is perturbed by diffusion,, Acta Mathematicae Applicatae Sinica, 23 (2007), 477.   Google Scholar

[21]

Z.-B. Liang and J.-Y. Guo, Optimal proportional reinsurance and ruin probability,, Stochastic Models, 23 (2007), 333.  doi: 10.1080/15326340701300894.  Google Scholar

[22]

Z.-B. Liang and J.-Y. Guo, Upper bound for ruin probabilities under optimal investment and proportional reinsurance,, Applied Stochastic Models in Business and Industry, 24 (2008), 109.  doi: 10.1002/asmb.694.  Google Scholar

[23]

C. S. Liu and H. L. Yang, Optimal investment for an insurer to minimize its probability of ruin,, North American Actuarial Journal, 8 (2004), 11.   Google Scholar

[24]

S.-Z. Luo, Ruin minimization for insurers with borrowing constraints,, North American Actuarial Journal, 12 (2009), 143.   Google Scholar

[25]

S.-Z. Luo, M. Taksar and A. Tsoi, On reinsurance and investment for large insurance portfolios,, Insurance: Mathematics and Economics, 42 (2008), 434.  doi: 10.1016/j.insmatheco.2007.04.002.  Google Scholar

[26]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time model,, Review of Economics and Statistics, 51 (1969), 247.  doi: 10.2307/1926560.  Google Scholar

[27]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model,, Journal of Economic Theory, 3 (1971), 373.   Google Scholar

[28]

A. F. Perold and W. F. Sharpe, Dynamic strategies for asset allocation,, Financial Analyst Journal, 44 (1988), 16.  doi: 10.2469/faj.v44.n1.16.  Google Scholar

[29]

S. D. Promislow and V. R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift,, North American Actuarial Journal, 9 (2005), 109.   Google Scholar

[30]

H. Schmidli, Optimal proportional reinsurance policies in a dynamic setting,, Scandinavian Actuarial Journal, 1 (2001), 55.   Google Scholar

[31]

H. Schmidli, On minimizing the ruin probability by investment and reinsurance,, The Annals of Applied Probability, 12 (2002), 890.   Google Scholar

[32]

M. Taksar and C. Markussen, Optimal dynamic reinsurance policies for large insurance portfolios,, Finance and Stochastics, 7 (2003), 97.   Google Scholar

[33]

Z. W. Wang, J. M. Xia and L. H. Zhang, Optimal investment for an insurer: The martingale approach,, Insurance: Mathematics and Economics, 40 (2007), 322.  doi: 10.1016/j.insmatheco.2006.05.003.  Google Scholar

[34]

L. Xu, R. M. Wang and D. J. Yao, On maximizing the expected terminal utility by investment and reinsurance,, Journal of Industrial and Management Optimization, 4 (2008), 801.   Google Scholar

[35]

H. L. Yang and L. H. Zhang, Optimal investment for insurer with jump-diffusion risk process,, Insurance: Mathematics and Economics, 37 (2005), 615.  doi: 10.1016/j.insmatheco.2005.06.009.  Google Scholar

[36]

Y. Zeng and Z. F. Li, Optimal time-consistent investment and reinsurance policies for mean-variance insurers,, Insurance: Mathematics and Economics, 49 (2011), 145.  doi: 10.1016/j.insmatheco.2011.01.001.  Google Scholar

[37]

Y. Zeng, Z. F. Li and J. J. Liu, Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers,, Journal of Industrial and Management Optimization, 6 (2010), 483.   Google Scholar

[1]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[2]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[3]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[4]

Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021015

[5]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[6]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[7]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[8]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[9]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[10]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[11]

Shuai Huang, Zhi-Ping Fan, Xiaohuan Wang. Optimal financing and operational decisions of capital-constrained manufacturer under green credit and subsidy. Journal of Industrial & Management Optimization, 2021, 17 (1) : 261-277. doi: 10.3934/jimo.2019110

[12]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[13]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[14]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002

[15]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[16]

Wenyan Zhuo, Honglin Yang, Leopoldo Eduardo Cárdenas-Barrón, Hong Wan. Loss-averse supply chain decisions with a capital constrained retailer. Journal of Industrial & Management Optimization, 2021, 17 (2) : 711-732. doi: 10.3934/jimo.2019131

[17]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

[18]

Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021002

[19]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[20]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]