November  2012, 17(8): 2745-2769. doi: 10.3934/dcdsb.2012.17.2745

On limit systems for some population models with cross-diffusion

1. 

Department of Communication Engineering and Informatics, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan

2. 

Department of Applied Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

Received  April 2011 Revised  September 2011 Published  July 2012

This paper deals with the following reaction-diffusion system $$ (SP) \begin{equation} \left\{\begin{array}{11} \Delta[(1+\alpha v)u]+u(a-u-cv)=0, \\ \Delta[(1+\beta u)v]+v(b-du-v)=0, \end{array} \right. \end{equation} $$ in a bounded domain of $\Bbb{R}^N$ with homogeneous Neumann boundary conditions or Dirichlet boundary conditions. Our main purpose is to understand the structure of positive solutions of (SP) and know the effects of cross-diffusion coefficients $\alpha$ and $\beta$. For this purpose, our strategy is to study limiting behavior of positive solutions when $\alpha$ or $\beta$ goes to $\infty$ and derive the corresponding limit systems. We will obtain a priori estimates of $u$ and $v$ independently of $\beta$ (resp. $\alpha$) with small $\alpha\ge0$ (resp. $\beta\ge0$) in case $1\le N\le 3$ under Neumann boundary conditions, while we will obtain a priori estimates of $u$ and $v$ independently of $\alpha$ and $\beta$ in case $1\le N\le 5$ under Dirichlet boundary conditions. These a priori estimates allow us to investigate limiting behavior of positive solutions. When $\alpha=0$ and $\beta\to\infty$, we can derive two limit systems for Neumann conditions and one limit system for Dirichlet conditions. We will also give some results on the structure of positive solutions for such limit systems.
Citation: Kousuke Kuto, Yoshio Yamada. On limit systems for some population models with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2745-2769. doi: 10.3934/dcdsb.2012.17.2745
References:
[1]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321.   Google Scholar

[2]

E. N. Dancer, On positive solutions of some pairs of differential equations,, Trans. Amer. Math. Soc., 284 (1984), 729.  doi: 10.1090/S0002-9947-1984-0743741-4.  Google Scholar

[3]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1998).   Google Scholar

[4]

C. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model,, Comm. Pure. Appl. Math., 47 (1994), 1571.   Google Scholar

[5]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics,, Hiroshima Math. J., 23 (1993), 509.   Google Scholar

[6]

Y. Kan-on and E. Yanagida, Existence of non-constant stable equilibria in competition-diffusion equations,, Hiroshima Math. J., 23 (1993), 193.   Google Scholar

[7]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction diffusion systems on convex domains,, J. Differential Equations, 58 (1985), 15.  doi: 10.1016/0022-0396(85)90020-8.  Google Scholar

[8]

K. Kuto and Y. Yamada, Positive solutions for Lotka-Volterra competition systems withcross-diffusion,, Applicable Anal., 89 (2010), 1037.   Google Scholar

[9]

C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1988), 1.   Google Scholar

[10]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.   Google Scholar

[11]

Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach,, J. Differential Equations, 154 (1999), 157.  doi: 10.1006/jdeq.1998.3559.  Google Scholar

[12]

Y. Lou, W.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 435.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[13]

H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains,, Publ. RIMS. Kyoto Univ., 19 (1983), 1049.  doi: 10.2977/prims/1195182020.  Google Scholar

[14]

M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics,, Hiroshima Math. J., 11 (1981), 621.   Google Scholar

[15]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.   Google Scholar

[16]

M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion,, Hiroshima Math. J., 14 (1984), 425.   Google Scholar

[17]

W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states,, Notices Amer. Math. Soc., 45 (1998), 9.   Google Scholar

[18]

W.-M. Ni, Qualitative properties of solutions to elliptic systems,, in, (2004), 157.   Google Scholar

[19]

A. Okubo and S. A. Levin, "Diffusion and Ecological Problems: Modern Perspectives,", Second edition, (2001).   Google Scholar

[20]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Springer-Verlag, (1984).   Google Scholar

[21]

W. H. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients,, J. Math. Anal. Appl., 197 (1996), 558.  doi: 10.1006/jmaa.1996.0039.  Google Scholar

[22]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions,, Discrete Contin. Dynam. Systems, 9 (2003), 1049.   Google Scholar

[23]

K. Ryu and I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics,, J. Math. Anal. Appl., 283 (2003), 46.  doi: 10.1016/S0022-247X(03)00162-8.  Google Scholar

[24]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[25]

Y. Wu, The instability of spiky steady states for a competing species model with cross diffusion,, J. Differential Equations, 213 (2005), 289.  doi: 10.1016/j.jde.2004.08.015.  Google Scholar

[26]

Y. Yamada, Positive solutions for Lotka-Volterra systems with cross-diffusion,, in, (2008), 411.   Google Scholar

show all references

References:
[1]

M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues,, J. Funct. Anal., 8 (1971), 321.   Google Scholar

[2]

E. N. Dancer, On positive solutions of some pairs of differential equations,, Trans. Amer. Math. Soc., 284 (1984), 729.  doi: 10.1090/S0002-9947-1984-0743741-4.  Google Scholar

[3]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Springer-Verlag, (1998).   Google Scholar

[4]

C. Gui and Y. Lou, Uniqueness and nonuniqueness of coexistence states in the Lotka-Volterra competition model,, Comm. Pure. Appl. Math., 47 (1994), 1571.   Google Scholar

[5]

Y. Kan-on, Stability of singularly perturbed solutions to nonlinear diffusion systems arising in population dynamics,, Hiroshima Math. J., 23 (1993), 509.   Google Scholar

[6]

Y. Kan-on and E. Yanagida, Existence of non-constant stable equilibria in competition-diffusion equations,, Hiroshima Math. J., 23 (1993), 193.   Google Scholar

[7]

K. Kishimoto and H. F. Weinberger, The spatial homogeneity of stable equilibria of some reaction diffusion systems on convex domains,, J. Differential Equations, 58 (1985), 15.  doi: 10.1016/0022-0396(85)90020-8.  Google Scholar

[8]

K. Kuto and Y. Yamada, Positive solutions for Lotka-Volterra competition systems withcross-diffusion,, Applicable Anal., 89 (2010), 1037.   Google Scholar

[9]

C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72 (1988), 1.   Google Scholar

[10]

Y. Lou and W. M. Ni, Diffusion, self-diffusion and cross-diffusion,, J. Differential Equations, 131 (1996), 79.   Google Scholar

[11]

Y. Lou and W.-M. Ni, Diffusion vs cross-diffusion: An elliptic approach,, J. Differential Equations, 154 (1999), 157.  doi: 10.1006/jdeq.1998.3559.  Google Scholar

[12]

Y. Lou, W.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross-diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 435.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[13]

H. Matano and M. Mimura, Pattern formation in competition-diffusion systems in nonconvex domains,, Publ. RIMS. Kyoto Univ., 19 (1983), 1049.  doi: 10.2977/prims/1195182020.  Google Scholar

[14]

M. Mimura, Stationary pattern of some density-dependent diffusion system with competitive dynamics,, Hiroshima Math. J., 11 (1981), 621.   Google Scholar

[15]

M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations,, J. Math. Biol., 9 (1980), 49.   Google Scholar

[16]

M. Mimura, Y. Nishiura, A. Tesei and T. Tsujikawa, Coexistence problem for two competing species models with density-dependent diffusion,, Hiroshima Math. J., 14 (1984), 425.   Google Scholar

[17]

W.-M. Ni, Diffusion, cross-diffusion, and their spike-layer steady states,, Notices Amer. Math. Soc., 45 (1998), 9.   Google Scholar

[18]

W.-M. Ni, Qualitative properties of solutions to elliptic systems,, in, (2004), 157.   Google Scholar

[19]

A. Okubo and S. A. Levin, "Diffusion and Ecological Problems: Modern Perspectives,", Second edition, (2001).   Google Scholar

[20]

M. H. Protter and H. F. Weinberger, "Maximum Principles in Differential Equations,", Springer-Verlag, (1984).   Google Scholar

[21]

W. H. Ruan, Positive steady-state solutions of a competing reaction-diffusion system with large cross-diffusion coefficients,, J. Math. Anal. Appl., 197 (1996), 558.  doi: 10.1006/jmaa.1996.0039.  Google Scholar

[22]

K. Ryu and I. Ahn, Positive steady-states for two interacting species models with linear self-cross diffusions,, Discrete Contin. Dynam. Systems, 9 (2003), 1049.   Google Scholar

[23]

K. Ryu and I. Ahn, Coexistence theorem of steady states for nonlinear self-cross diffusion systems with competitive dynamics,, J. Math. Anal. Appl., 283 (2003), 46.  doi: 10.1016/S0022-247X(03)00162-8.  Google Scholar

[24]

N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species,, J. Theor. Biol., 79 (1979), 83.  doi: 10.1016/0022-5193(79)90258-3.  Google Scholar

[25]

Y. Wu, The instability of spiky steady states for a competing species model with cross diffusion,, J. Differential Equations, 213 (2005), 289.  doi: 10.1016/j.jde.2004.08.015.  Google Scholar

[26]

Y. Yamada, Positive solutions for Lotka-Volterra systems with cross-diffusion,, in, (2008), 411.   Google Scholar

[1]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[2]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[3]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[4]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[5]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[6]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[7]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[8]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[9]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[10]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[11]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[12]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[13]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021013

[14]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[15]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[16]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[17]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[18]

Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135

[19]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[20]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]