2012, 9(3): 461-485. doi: 10.3934/mbe.2012.9.461

Stochastic models for competing species with a shared pathogen

1. 

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, United States

2. 

Department of Mathematics, Oregon State University, Corvallis, OR 97331-4605, United States

Received  December 2011 Revised  March 2012 Published  July 2012

The presence of a pathogen among multiple competing species has important ecological implications. For example, a pathogen may change the competitive outcome, resulting in replacement of a native species by a non-native species. Alternately, if a pathogen becomes established, there may be a drastic reduction in species numbers. Stochastic variability in the birth, death and pathogen transmission processes plays an important role in determining the success of species or pathogen invasion. We investigate these phenomena while studying the dynamics of deterministic and stochastic models for $n$ competing species with a shared pathogen. The deterministic model is a system of ordinary differential equations for $n$ competing species in which a single shared pathogen is transmitted among the $n$ species. There is no immunity from infection, individuals either die or recover and become immediately susceptible, an SIS disease model. Analytical results about pathogen persistence or extinction are summarized for the deterministic model for two and three species and new results about stability of the infection-free state and invasion by one species of a system of $n-1$ species are obtained. New stochastic models are derived in the form of continuous-time Markov chains and stochastic differential equations. Branching process theory is applied to the continuous-time Markov chain model to estimate probabilities for pathogen extinction or species invasion. Finally, numerical simulations are conducted to explore the effect of disease on two-species competition, to illustrate some of the analytical results and to highlight some of the differences in the stochastic and deterministic models.
Citation: Linda J. S. Allen, Vrushali A. Bokil. Stochastic models for competing species with a shared pathogen. Mathematical Biosciences & Engineering, 2012, 9 (3) : 461-485. doi: 10.3934/mbe.2012.9.461
References:
[1]

E. Allen, "Modeling With Itô Stochastic Differential Equations,'', Mathematical Modelling: Theory and Applications, 22 (2007).

[2]

E. J. Allen, L. J. S. Allen, A. Arciniega and P. Greenwood, Construction of equivalent stochastic differential equation models,, Stoch. Anal. Appl., 26 (2008), 274.

[3]

L. J. S. Allen, "An Introduction to Mathematical Biology,'', Prentice Hall, (2007).

[4]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'', 2nd edition, (2011).

[5]

L. J. S. Allen and N. Kirupaharan, Asymptotic dynamics of deterministic and stochastic epidemic models with multiple pathogens,, Int. J. Numer. Anal. Modeling, 2 (2005), 329.

[6]

R. M. Anderson and R. M. May, The invasion, persistence and spread of infectious diseases with animal and plant communities,, Phil. Trans. R. Soc. Lond. B, 314 (1986), 533. doi: 10.1098/rstb.1986.0072.

[7]

N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences,'', Reprint of the 1964 original, (1964).

[8]

M. S. Bartlett, The relevance of stochastic models for large-scale epidemiological phenomena,, Appl. Statist., 13 (1965), 2.

[9]

M. Begon, R. G. Bowers, N. Kadianakis and D. E. Hodgkinson, Disease and community structure: The importance of host self-regulation in a host-host-pathogen model,, Am. Nat., 139 (1992), 1131. doi: 10.1086/285379.

[10]

V. A. Bokil and M.-R. Leung, An analysis of the coexistence of three competing species with a shared pathogen,, Technical Report ORST-MATH-11-02, (2011), 11.

[11]

E. T. Borer, P. R. Hosseini, E. W. Seabloom and A. P. Dobson, Pathogen-induced reversal of native dominance in a grassland community,, Proc. Natl. Acad. Sci. U. S. A., 104 (2007), 5473.

[12]

R. G. Bowers and J. Turner, Community structure and the interplay between interspecific infection and competition,, J. Theor. Biol., 187 (1997), 95. doi: 10.1006/jtbi.1997.0418.

[13]

S. K. Collinge and C. Ray, "Disease Ecology: Community Structure and Pathogen Dynamics,", Oxford Univ. Press, (2006).

[14]

A. Dobson, Population dynamics of pathogens with multiple host species,, Am. Nat., 164 (2004). doi: 10.1086/424681.

[15]

R. Durrett, Mutual invadability implies coexistence in spatial models,, Mem. Am. Math. Soc., 156 (2002).

[16]

R. Durrett, Special invited paper: Coexistence in stochastic spatial models,, Ann. Appl. Probab., 19 (2009), 477. doi: 10.1214/08-AAP590.

[17]

R. Durrett and C. Neuhauser, Coexistence results for some competition models,, Ann. Appl. Probab., 7 (1997), 10.

[18]

L. Gilbert, R. Norman, K. M. Laurenson, H. W. Reid and P. J. Hudson, Disease persistence and apparent competition in a three-host community: An empirical and analytical study of large-scale, wild populations,, J. Anim. Ecol., 70 (2001), 1053. doi: 10.1046/j.0021-8790.2001.00558.x.

[19]

D. T. Gillespie, "Markov Processes: An Introduction for Physical Scientists,'', Academic Press, (1992).

[20]

J. V. Greenman and P. J. Hudson, Infected coexistence instability with and without density-dependent regulation,, J. Theor. Biol., 185 (1997), 345. doi: 10.1006/jtbi.1996.0309.

[21]

M. Griffiths and D. Greenhalgh, The probability of extinction in a bovine respiratory syncytial virus epidemic model,, Math. Biosci., 231 (2011), 144. doi: 10.1016/j.mbs.2011.02.011.

[22]

B. A. Han, "The Effects of an Emerging Pathogen on Amphibian Host Behaviors and Interactions,", Ph.D thesis, (2009).

[23]

L. Han, Z. Ma and T. Shi, An SIRS epidemic model of two competitive species,, Math. Comput. Model., 37 (2003), 87. doi: 10.1016/S0895-7177(03)80008-0.

[24]

L. Han and A. Pugliese, Epidemics in two competing species,, Nonlinear Anal. Real World Appl., 10 (2009), 723. doi: 10.1016/j.nonrwa.2007.11.005.

[25]

T. E. Harris, "The Theory of Branching Processes,'', Die Grundlehren der Mathematischen Wissenschaften, (1963).

[26]

M. J. Hatcher, J. T. A. Dick and A. M. Dunn, How parasites affect interactions between competitors and predators,, Ecol. Lett., 9 (2006), 1253. doi: 10.1111/j.1461-0248.2006.00964.x.

[27]

D. J. Higham, Modeling and simulating chemical reactions,, SIAM Rev., 50 (2008), 347. doi: 10.1137/060666457.

[28]

R. D. Holt and A. P. Dobson, Chapter 2: Extending the principles of community ecology to address the epidemiology of host-pathogen systems, in "Disease Ecology: Community Structure and Pathogen Dynamics" (eds. S. K. Collinge and C. Ray),, Oxford Univ. Press, (2006), 2.

[29]

R. D. Holt and J. Pickering, Infectious disease and species coexistence: A model of Lotka-Volterra form,, Am. Nat., 126 (1985), 196. doi: 10.1086/284409.

[30]

P. Hudson and J. Greenman, Competition mediated by parasites: Biological and theoretical progress,, Trends Ecol. Evol., 13 (1998), 387.

[31]

P. Jagers, "Branching Processes with Biological Applications,'', Wiley Series in Probability and Mathematical Statistics Applied Probability and Statistics, (1975).

[32]

S. T. Karlin and H. M. Taylor, "A First Course in Stochastic Processes,'', 2nd edition, (1975).

[33]

J. M. Kiesecker and A. R. Blaustein, Pathogen reverses competition between larval amphibians,, Ecology, 80 (1999), 2442.

[34]

P. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'', Applications of Mathematics (New York), 23 (1992).

[35]

N. Lanchier and C. Neuhauser, A spatially explicit model for competition among specialists and generalists in a heterogeneous environment,, Ann. Appl. Probab., 16 (2006), 1385. doi: 10.1214/105051606000000394.

[36]

N. Lanchier and C. Neuhauser, Stochastic spatial models of host-pathogen and host-mutualist interactions. I,, Ann. Appl. Probab., 16 (2006), 448. doi: 10.1214/105051605000000782.

[37]

C. A. Manore, "Non-Spatial and Spatial Models for Multi-Host Pathogen Spread in Competing Species: Applications to Barley Yellow Dwarf Virus and Rinderpest,", Ph.D thesis, (2012).

[38]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, Special issue on mathematics and the social and biological sciences, 29 (1975), 243. doi: 10.1137/0129022.

[39]

H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled?,, Trends Ecol. Evol., 16 (2001), 295. doi: 10.1016/S0169-5347(01)02144-9.

[40]

R. K. McCormack, "Multi-Host Multi-Patch Mathematical Epidemic Models for Disease Emergence with Applications to Hantavirus in Wild Rodents,", Ph.D thesis, (2006).

[41]

R. K. McCormack and L. J. S. Allen, Stochastic SIS and SIR multihost epidemic models,, in, (2006), 775.

[42]

R. K. McCormack and L. J. S. Allen, Disease emergence in multi-host epidemic models,, Math. Med. Biol., 24 (2007), 17. doi: 10.1093/imammb/dql021.

[43]

C. J. Mode, "Multitype Branching Processes. Theory and Applications,'', Modern Analytic and Computational Methods in Science and Mathematics, (1971).

[44]

S. M. Moore, C. A. Manore, V. A. Bokil, E. T. Borer and P. R. Hosseini, Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition,, Bull. Math. Biol., 73 (2011), 2707.

[45]

C. Neuhauser and S. W. Pacala, An explicitly spatial version of the Lotka-Volterra model with interspecific competition,, Ann. Appl. Probab., 9 (1999), 1226.

[46]

R. Norman, R. G. Bowers, M. Begon and P. J. Hudson, Persistence of tick-borne virus in the presence of multiple host species: Tick reservoirs and parasite mediated competition,, J. Theor. Biol., 200 (1999), 111. doi: 10.1006/jtbi.1999.0982.

[47]

J. M. Ortega, "Matrix Theory. A Second Course,", The University Series in Mathematics, (1987).

[48]

S. Pénisson, "Conditional Limit Theorems for Multitype Branching Processes and Illustration in Epidemiological Risk Analysis,", Ph.D thesis, (2010).

[49]

R. A. Saenz and H. W. Hethcote, Competing species models with an infectious disease,, Math. Biosci. Eng., 3 (2006), 219.

[50]

D. M. Tompkins, R. A. H. Draycott and P. J. Hudson, Field evidence for apparent competition mediated via the shared parasites of two gamebird species,, Ecol. Lett., 3 (2000), 10.

[51]

D. M. Tompkins, A. R. White and M. Boots, Ecological replacement of native red squirrels by invasive greys driven by disease,, Ecol. Lett., 6 (2003), 189.

[52]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.

[53]

P. van den Driessche and M. L. Zeeman, Disease induced oscillations between two competing species,, SIAM J. Appl. Dyn. Sys., 3 (2004), 601.

[54]

E. Venturino, The effects of diseases on competing species,, Math. Biosci., 174 (2001), 111. doi: 10.1016/S0025-5564(01)00081-5.

[55]

P. Whittle, The outcome of a stochastic epidemic: A note on Bailey's paper,, Biometrika, 42 (1955), 116. doi: 10.2307/2333427.

[56]

E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive Lotka-Volterra systems,, Trans. Am. Math. Soc., 355 (2003), 713. doi: 10.1090/S0002-9947-02-03103-3.

show all references

References:
[1]

E. Allen, "Modeling With Itô Stochastic Differential Equations,'', Mathematical Modelling: Theory and Applications, 22 (2007).

[2]

E. J. Allen, L. J. S. Allen, A. Arciniega and P. Greenwood, Construction of equivalent stochastic differential equation models,, Stoch. Anal. Appl., 26 (2008), 274.

[3]

L. J. S. Allen, "An Introduction to Mathematical Biology,'', Prentice Hall, (2007).

[4]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'', 2nd edition, (2011).

[5]

L. J. S. Allen and N. Kirupaharan, Asymptotic dynamics of deterministic and stochastic epidemic models with multiple pathogens,, Int. J. Numer. Anal. Modeling, 2 (2005), 329.

[6]

R. M. Anderson and R. M. May, The invasion, persistence and spread of infectious diseases with animal and plant communities,, Phil. Trans. R. Soc. Lond. B, 314 (1986), 533. doi: 10.1098/rstb.1986.0072.

[7]

N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences,'', Reprint of the 1964 original, (1964).

[8]

M. S. Bartlett, The relevance of stochastic models for large-scale epidemiological phenomena,, Appl. Statist., 13 (1965), 2.

[9]

M. Begon, R. G. Bowers, N. Kadianakis and D. E. Hodgkinson, Disease and community structure: The importance of host self-regulation in a host-host-pathogen model,, Am. Nat., 139 (1992), 1131. doi: 10.1086/285379.

[10]

V. A. Bokil and M.-R. Leung, An analysis of the coexistence of three competing species with a shared pathogen,, Technical Report ORST-MATH-11-02, (2011), 11.

[11]

E. T. Borer, P. R. Hosseini, E. W. Seabloom and A. P. Dobson, Pathogen-induced reversal of native dominance in a grassland community,, Proc. Natl. Acad. Sci. U. S. A., 104 (2007), 5473.

[12]

R. G. Bowers and J. Turner, Community structure and the interplay between interspecific infection and competition,, J. Theor. Biol., 187 (1997), 95. doi: 10.1006/jtbi.1997.0418.

[13]

S. K. Collinge and C. Ray, "Disease Ecology: Community Structure and Pathogen Dynamics,", Oxford Univ. Press, (2006).

[14]

A. Dobson, Population dynamics of pathogens with multiple host species,, Am. Nat., 164 (2004). doi: 10.1086/424681.

[15]

R. Durrett, Mutual invadability implies coexistence in spatial models,, Mem. Am. Math. Soc., 156 (2002).

[16]

R. Durrett, Special invited paper: Coexistence in stochastic spatial models,, Ann. Appl. Probab., 19 (2009), 477. doi: 10.1214/08-AAP590.

[17]

R. Durrett and C. Neuhauser, Coexistence results for some competition models,, Ann. Appl. Probab., 7 (1997), 10.

[18]

L. Gilbert, R. Norman, K. M. Laurenson, H. W. Reid and P. J. Hudson, Disease persistence and apparent competition in a three-host community: An empirical and analytical study of large-scale, wild populations,, J. Anim. Ecol., 70 (2001), 1053. doi: 10.1046/j.0021-8790.2001.00558.x.

[19]

D. T. Gillespie, "Markov Processes: An Introduction for Physical Scientists,'', Academic Press, (1992).

[20]

J. V. Greenman and P. J. Hudson, Infected coexistence instability with and without density-dependent regulation,, J. Theor. Biol., 185 (1997), 345. doi: 10.1006/jtbi.1996.0309.

[21]

M. Griffiths and D. Greenhalgh, The probability of extinction in a bovine respiratory syncytial virus epidemic model,, Math. Biosci., 231 (2011), 144. doi: 10.1016/j.mbs.2011.02.011.

[22]

B. A. Han, "The Effects of an Emerging Pathogen on Amphibian Host Behaviors and Interactions,", Ph.D thesis, (2009).

[23]

L. Han, Z. Ma and T. Shi, An SIRS epidemic model of two competitive species,, Math. Comput. Model., 37 (2003), 87. doi: 10.1016/S0895-7177(03)80008-0.

[24]

L. Han and A. Pugliese, Epidemics in two competing species,, Nonlinear Anal. Real World Appl., 10 (2009), 723. doi: 10.1016/j.nonrwa.2007.11.005.

[25]

T. E. Harris, "The Theory of Branching Processes,'', Die Grundlehren der Mathematischen Wissenschaften, (1963).

[26]

M. J. Hatcher, J. T. A. Dick and A. M. Dunn, How parasites affect interactions between competitors and predators,, Ecol. Lett., 9 (2006), 1253. doi: 10.1111/j.1461-0248.2006.00964.x.

[27]

D. J. Higham, Modeling and simulating chemical reactions,, SIAM Rev., 50 (2008), 347. doi: 10.1137/060666457.

[28]

R. D. Holt and A. P. Dobson, Chapter 2: Extending the principles of community ecology to address the epidemiology of host-pathogen systems, in "Disease Ecology: Community Structure and Pathogen Dynamics" (eds. S. K. Collinge and C. Ray),, Oxford Univ. Press, (2006), 2.

[29]

R. D. Holt and J. Pickering, Infectious disease and species coexistence: A model of Lotka-Volterra form,, Am. Nat., 126 (1985), 196. doi: 10.1086/284409.

[30]

P. Hudson and J. Greenman, Competition mediated by parasites: Biological and theoretical progress,, Trends Ecol. Evol., 13 (1998), 387.

[31]

P. Jagers, "Branching Processes with Biological Applications,'', Wiley Series in Probability and Mathematical Statistics Applied Probability and Statistics, (1975).

[32]

S. T. Karlin and H. M. Taylor, "A First Course in Stochastic Processes,'', 2nd edition, (1975).

[33]

J. M. Kiesecker and A. R. Blaustein, Pathogen reverses competition between larval amphibians,, Ecology, 80 (1999), 2442.

[34]

P. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'', Applications of Mathematics (New York), 23 (1992).

[35]

N. Lanchier and C. Neuhauser, A spatially explicit model for competition among specialists and generalists in a heterogeneous environment,, Ann. Appl. Probab., 16 (2006), 1385. doi: 10.1214/105051606000000394.

[36]

N. Lanchier and C. Neuhauser, Stochastic spatial models of host-pathogen and host-mutualist interactions. I,, Ann. Appl. Probab., 16 (2006), 448. doi: 10.1214/105051605000000782.

[37]

C. A. Manore, "Non-Spatial and Spatial Models for Multi-Host Pathogen Spread in Competing Species: Applications to Barley Yellow Dwarf Virus and Rinderpest,", Ph.D thesis, (2012).

[38]

R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, Special issue on mathematics and the social and biological sciences, 29 (1975), 243. doi: 10.1137/0129022.

[39]

H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled?,, Trends Ecol. Evol., 16 (2001), 295. doi: 10.1016/S0169-5347(01)02144-9.

[40]

R. K. McCormack, "Multi-Host Multi-Patch Mathematical Epidemic Models for Disease Emergence with Applications to Hantavirus in Wild Rodents,", Ph.D thesis, (2006).

[41]

R. K. McCormack and L. J. S. Allen, Stochastic SIS and SIR multihost epidemic models,, in, (2006), 775.

[42]

R. K. McCormack and L. J. S. Allen, Disease emergence in multi-host epidemic models,, Math. Med. Biol., 24 (2007), 17. doi: 10.1093/imammb/dql021.

[43]

C. J. Mode, "Multitype Branching Processes. Theory and Applications,'', Modern Analytic and Computational Methods in Science and Mathematics, (1971).

[44]

S. M. Moore, C. A. Manore, V. A. Bokil, E. T. Borer and P. R. Hosseini, Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition,, Bull. Math. Biol., 73 (2011), 2707.

[45]

C. Neuhauser and S. W. Pacala, An explicitly spatial version of the Lotka-Volterra model with interspecific competition,, Ann. Appl. Probab., 9 (1999), 1226.

[46]

R. Norman, R. G. Bowers, M. Begon and P. J. Hudson, Persistence of tick-borne virus in the presence of multiple host species: Tick reservoirs and parasite mediated competition,, J. Theor. Biol., 200 (1999), 111. doi: 10.1006/jtbi.1999.0982.

[47]

J. M. Ortega, "Matrix Theory. A Second Course,", The University Series in Mathematics, (1987).

[48]

S. Pénisson, "Conditional Limit Theorems for Multitype Branching Processes and Illustration in Epidemiological Risk Analysis,", Ph.D thesis, (2010).

[49]

R. A. Saenz and H. W. Hethcote, Competing species models with an infectious disease,, Math. Biosci. Eng., 3 (2006), 219.

[50]

D. M. Tompkins, R. A. H. Draycott and P. J. Hudson, Field evidence for apparent competition mediated via the shared parasites of two gamebird species,, Ecol. Lett., 3 (2000), 10.

[51]

D. M. Tompkins, A. R. White and M. Boots, Ecological replacement of native red squirrels by invasive greys driven by disease,, Ecol. Lett., 6 (2003), 189.

[52]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.

[53]

P. van den Driessche and M. L. Zeeman, Disease induced oscillations between two competing species,, SIAM J. Appl. Dyn. Sys., 3 (2004), 601.

[54]

E. Venturino, The effects of diseases on competing species,, Math. Biosci., 174 (2001), 111. doi: 10.1016/S0025-5564(01)00081-5.

[55]

P. Whittle, The outcome of a stochastic epidemic: A note on Bailey's paper,, Biometrika, 42 (1955), 116. doi: 10.2307/2333427.

[56]

E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive Lotka-Volterra systems,, Trans. Am. Math. Soc., 355 (2003), 713. doi: 10.1090/S0002-9947-02-03103-3.

[1]

Vladimir Kazakov. Sampling - reconstruction procedure with jitter of markov continuous processes formed by stochastic differential equations of the first order. Conference Publications, 2009, 2009 (Special) : 433-441. doi: 10.3934/proc.2009.2009.433

[2]

Felix X.-F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2337-2361. doi: 10.3934/dcdsb.2016050

[3]

H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1

[4]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[5]

Demetris Hadjiloucas. Stochastic matrix-valued cocycles and non-homogeneous Markov chains. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 731-738. doi: 10.3934/dcds.2007.17.731

[6]

Lakhdar Aggoun, Lakdere Benkherouf. A Markov modulated continuous-time capture-recapture population estimation model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1057-1075. doi: 10.3934/dcdsb.2005.5.1057

[7]

Yayun Zheng, Xu Sun. Governing equations for Probability densities of stochastic differential equations with discrete time delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3615-3628. doi: 10.3934/dcdsb.2017182

[8]

Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistence-time estimation for some stochastic SIS epidemic models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 2933-2947. doi: 10.3934/dcdsb.2015.20.2933

[9]

David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 3099-3138. doi: 10.3934/dcds.2018135

[10]

Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-11. doi: 10.3934/dcdsb.2018272

[11]

Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2018203

[12]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[13]

Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169

[14]

Wael Bahsoun, Paweł Góra. SRB measures for certain Markov processes. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 17-37. doi: 10.3934/dcds.2011.30.17

[15]

Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics & Games, 2014, 1 (4) : 639-659. doi: 10.3934/jdg.2014.1.639

[16]

Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1

[17]

Linyi Qian, Wei Wang, Rongming Wang. Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 411-429. doi: 10.3934/jimo.2013.9.411

[18]

Zhenzhong Zhang, Enhua Zhang, Jinying Tong. Necessary and sufficient conditions for ergodicity of CIR model driven by stable processes with Markov switching. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2433-2455. doi: 10.3934/dcdsb.2018053

[19]

Ludwig Arnold, Igor Chueshov. Cooperative random and stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 1-33. doi: 10.3934/dcds.2001.7.1

[20]

Zhengyan Wang, Guanghua Xu, Peibiao Zhao, Zudi Lu. The optimal cash holding models for stochastic cash management of continuous time. Journal of Industrial & Management Optimization, 2018, 14 (1) : 1-17. doi: 10.3934/jimo.2017034

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]