
Previous Article
A comparison of computational efficiencies of stochastic algorithms in terms of two infection models
 MBE Home
 This Issue
 Next Article
Stochastic models for competing species with a shared pathogen
1.  Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 794091042, United States 
2.  Department of Mathematics, Oregon State University, Corvallis, OR 973314605, United States 
References:
[1] 
E. Allen, "Modeling With Itô Stochastic Differential Equations,'', Mathematical Modelling: Theory and Applications, 22 (2007). Google Scholar 
[2] 
E. J. Allen, L. J. S. Allen, A. Arciniega and P. Greenwood, Construction of equivalent stochastic differential equation models,, Stoch. Anal. Appl., 26 (2008), 274. Google Scholar 
[3] 
L. J. S. Allen, "An Introduction to Mathematical Biology,'', Prentice Hall, (2007). Google Scholar 
[4] 
L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'', 2^{nd} edition, (2011). Google Scholar 
[5] 
L. J. S. Allen and N. Kirupaharan, Asymptotic dynamics of deterministic and stochastic epidemic models with multiple pathogens,, Int. J. Numer. Anal. Modeling, 2 (2005), 329. Google Scholar 
[6] 
R. M. Anderson and R. M. May, The invasion, persistence and spread of infectious diseases with animal and plant communities,, Phil. Trans. R. Soc. Lond. B, 314 (1986), 533. doi: 10.1098/rstb.1986.0072. Google Scholar 
[7] 
N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences,'', Reprint of the 1964 original, (1964). Google Scholar 
[8] 
M. S. Bartlett, The relevance of stochastic models for largescale epidemiological phenomena,, Appl. Statist., 13 (1965), 2. Google Scholar 
[9] 
M. Begon, R. G. Bowers, N. Kadianakis and D. E. Hodgkinson, Disease and community structure: The importance of host selfregulation in a hosthostpathogen model,, Am. Nat., 139 (1992), 1131. doi: 10.1086/285379. Google Scholar 
[10] 
V. A. Bokil and M.R. Leung, An analysis of the coexistence of three competing species with a shared pathogen,, Technical Report ORSTMATH1102, (2011), 11. Google Scholar 
[11] 
E. T. Borer, P. R. Hosseini, E. W. Seabloom and A. P. Dobson, Pathogeninduced reversal of native dominance in a grassland community,, Proc. Natl. Acad. Sci. U. S. A., 104 (2007), 5473. Google Scholar 
[12] 
R. G. Bowers and J. Turner, Community structure and the interplay between interspecific infection and competition,, J. Theor. Biol., 187 (1997), 95. doi: 10.1006/jtbi.1997.0418. Google Scholar 
[13] 
S. K. Collinge and C. Ray, "Disease Ecology: Community Structure and Pathogen Dynamics,", Oxford Univ. Press, (2006). Google Scholar 
[14] 
A. Dobson, Population dynamics of pathogens with multiple host species,, Am. Nat., 164 (2004). doi: 10.1086/424681. Google Scholar 
[15] 
R. Durrett, Mutual invadability implies coexistence in spatial models,, Mem. Am. Math. Soc., 156 (2002). Google Scholar 
[16] 
R. Durrett, Special invited paper: Coexistence in stochastic spatial models,, Ann. Appl. Probab., 19 (2009), 477. doi: 10.1214/08AAP590. Google Scholar 
[17] 
R. Durrett and C. Neuhauser, Coexistence results for some competition models,, Ann. Appl. Probab., 7 (1997), 10. Google Scholar 
[18] 
L. Gilbert, R. Norman, K. M. Laurenson, H. W. Reid and P. J. Hudson, Disease persistence and apparent competition in a threehost community: An empirical and analytical study of largescale, wild populations,, J. Anim. Ecol., 70 (2001), 1053. doi: 10.1046/j.00218790.2001.00558.x. Google Scholar 
[19] 
D. T. Gillespie, "Markov Processes: An Introduction for Physical Scientists,'', Academic Press, (1992). Google Scholar 
[20] 
J. V. Greenman and P. J. Hudson, Infected coexistence instability with and without densitydependent regulation,, J. Theor. Biol., 185 (1997), 345. doi: 10.1006/jtbi.1996.0309. Google Scholar 
[21] 
M. Griffiths and D. Greenhalgh, The probability of extinction in a bovine respiratory syncytial virus epidemic model,, Math. Biosci., 231 (2011), 144. doi: 10.1016/j.mbs.2011.02.011. Google Scholar 
[22] 
B. A. Han, "The Effects of an Emerging Pathogen on Amphibian Host Behaviors and Interactions,", Ph.D thesis, (2009). Google Scholar 
[23] 
L. Han, Z. Ma and T. Shi, An SIRS epidemic model of two competitive species,, Math. Comput. Model., 37 (2003), 87. doi: 10.1016/S08957177(03)800080. Google Scholar 
[24] 
L. Han and A. Pugliese, Epidemics in two competing species,, Nonlinear Anal. Real World Appl., 10 (2009), 723. doi: 10.1016/j.nonrwa.2007.11.005. Google Scholar 
[25] 
T. E. Harris, "The Theory of Branching Processes,'', Die Grundlehren der Mathematischen Wissenschaften, (1963). Google Scholar 
[26] 
M. J. Hatcher, J. T. A. Dick and A. M. Dunn, How parasites affect interactions between competitors and predators,, Ecol. Lett., 9 (2006), 1253. doi: 10.1111/j.14610248.2006.00964.x. Google Scholar 
[27] 
D. J. Higham, Modeling and simulating chemical reactions,, SIAM Rev., 50 (2008), 347. doi: 10.1137/060666457. Google Scholar 
[28] 
R. D. Holt and A. P. Dobson, Chapter 2: Extending the principles of community ecology to address the epidemiology of hostpathogen systems, in "Disease Ecology: Community Structure and Pathogen Dynamics" (eds. S. K. Collinge and C. Ray),, Oxford Univ. Press, (2006), 2. Google Scholar 
[29] 
R. D. Holt and J. Pickering, Infectious disease and species coexistence: A model of LotkaVolterra form,, Am. Nat., 126 (1985), 196. doi: 10.1086/284409. Google Scholar 
[30] 
P. Hudson and J. Greenman, Competition mediated by parasites: Biological and theoretical progress,, Trends Ecol. Evol., 13 (1998), 387. Google Scholar 
[31] 
P. Jagers, "Branching Processes with Biological Applications,'', Wiley Series in Probability and Mathematical Statistics Applied Probability and Statistics, (1975). Google Scholar 
[32] 
S. T. Karlin and H. M. Taylor, "A First Course in Stochastic Processes,'', 2^{nd} edition, (1975). Google Scholar 
[33] 
J. M. Kiesecker and A. R. Blaustein, Pathogen reverses competition between larval amphibians,, Ecology, 80 (1999), 2442. Google Scholar 
[34] 
P. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'', Applications of Mathematics (New York), 23 (1992). Google Scholar 
[35] 
N. Lanchier and C. Neuhauser, A spatially explicit model for competition among specialists and generalists in a heterogeneous environment,, Ann. Appl. Probab., 16 (2006), 1385. doi: 10.1214/105051606000000394. Google Scholar 
[36] 
N. Lanchier and C. Neuhauser, Stochastic spatial models of hostpathogen and hostmutualist interactions. I,, Ann. Appl. Probab., 16 (2006), 448. doi: 10.1214/105051605000000782. Google Scholar 
[37] 
C. A. Manore, "NonSpatial and Spatial Models for MultiHost Pathogen Spread in Competing Species: Applications to Barley Yellow Dwarf Virus and Rinderpest,", Ph.D thesis, (2012). Google Scholar 
[38] 
R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, Special issue on mathematics and the social and biological sciences, 29 (1975), 243. doi: 10.1137/0129022. Google Scholar 
[39] 
H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled?,, Trends Ecol. Evol., 16 (2001), 295. doi: 10.1016/S01695347(01)021449. Google Scholar 
[40] 
R. K. McCormack, "MultiHost MultiPatch Mathematical Epidemic Models for Disease Emergence with Applications to Hantavirus in Wild Rodents,", Ph.D thesis, (2006). Google Scholar 
[41] 
R. K. McCormack and L. J. S. Allen, Stochastic SIS and SIR multihost epidemic models,, in, (2006), 775. Google Scholar 
[42] 
R. K. McCormack and L. J. S. Allen, Disease emergence in multihost epidemic models,, Math. Med. Biol., 24 (2007), 17. doi: 10.1093/imammb/dql021. Google Scholar 
[43] 
C. J. Mode, "Multitype Branching Processes. Theory and Applications,'', Modern Analytic and Computational Methods in Science and Mathematics, (1971). Google Scholar 
[44] 
S. M. Moore, C. A. Manore, V. A. Bokil, E. T. Borer and P. R. Hosseini, Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition,, Bull. Math. Biol., 73 (2011), 2707. Google Scholar 
[45] 
C. Neuhauser and S. W. Pacala, An explicitly spatial version of the LotkaVolterra model with interspecific competition,, Ann. Appl. Probab., 9 (1999), 1226. Google Scholar 
[46] 
R. Norman, R. G. Bowers, M. Begon and P. J. Hudson, Persistence of tickborne virus in the presence of multiple host species: Tick reservoirs and parasite mediated competition,, J. Theor. Biol., 200 (1999), 111. doi: 10.1006/jtbi.1999.0982. Google Scholar 
[47] 
J. M. Ortega, "Matrix Theory. A Second Course,", The University Series in Mathematics, (1987). Google Scholar 
[48] 
S. Pénisson, "Conditional Limit Theorems for Multitype Branching Processes and Illustration in Epidemiological Risk Analysis,", Ph.D thesis, (2010). Google Scholar 
[49] 
R. A. Saenz and H. W. Hethcote, Competing species models with an infectious disease,, Math. Biosci. Eng., 3 (2006), 219. Google Scholar 
[50] 
D. M. Tompkins, R. A. H. Draycott and P. J. Hudson, Field evidence for apparent competition mediated via the shared parasites of two gamebird species,, Ecol. Lett., 3 (2000), 10. Google Scholar 
[51] 
D. M. Tompkins, A. R. White and M. Boots, Ecological replacement of native red squirrels by invasive greys driven by disease,, Ecol. Lett., 6 (2003), 189. Google Scholar 
[52] 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. Google Scholar 
[53] 
P. van den Driessche and M. L. Zeeman, Disease induced oscillations between two competing species,, SIAM J. Appl. Dyn. Sys., 3 (2004), 601. Google Scholar 
[54] 
E. Venturino, The effects of diseases on competing species,, Math. Biosci., 174 (2001), 111. doi: 10.1016/S00255564(01)000815. Google Scholar 
[55] 
P. Whittle, The outcome of a stochastic epidemic: A note on Bailey's paper,, Biometrika, 42 (1955), 116. doi: 10.2307/2333427. Google Scholar 
[56] 
E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive LotkaVolterra systems,, Trans. Am. Math. Soc., 355 (2003), 713. doi: 10.1090/S0002994702031033. Google Scholar 
show all references
References:
[1] 
E. Allen, "Modeling With Itô Stochastic Differential Equations,'', Mathematical Modelling: Theory and Applications, 22 (2007). Google Scholar 
[2] 
E. J. Allen, L. J. S. Allen, A. Arciniega and P. Greenwood, Construction of equivalent stochastic differential equation models,, Stoch. Anal. Appl., 26 (2008), 274. Google Scholar 
[3] 
L. J. S. Allen, "An Introduction to Mathematical Biology,'', Prentice Hall, (2007). Google Scholar 
[4] 
L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,'', 2^{nd} edition, (2011). Google Scholar 
[5] 
L. J. S. Allen and N. Kirupaharan, Asymptotic dynamics of deterministic and stochastic epidemic models with multiple pathogens,, Int. J. Numer. Anal. Modeling, 2 (2005), 329. Google Scholar 
[6] 
R. M. Anderson and R. M. May, The invasion, persistence and spread of infectious diseases with animal and plant communities,, Phil. Trans. R. Soc. Lond. B, 314 (1986), 533. doi: 10.1098/rstb.1986.0072. Google Scholar 
[7] 
N. T. J. Bailey, "The Elements of Stochastic Processes with Applications to the Natural Sciences,'', Reprint of the 1964 original, (1964). Google Scholar 
[8] 
M. S. Bartlett, The relevance of stochastic models for largescale epidemiological phenomena,, Appl. Statist., 13 (1965), 2. Google Scholar 
[9] 
M. Begon, R. G. Bowers, N. Kadianakis and D. E. Hodgkinson, Disease and community structure: The importance of host selfregulation in a hosthostpathogen model,, Am. Nat., 139 (1992), 1131. doi: 10.1086/285379. Google Scholar 
[10] 
V. A. Bokil and M.R. Leung, An analysis of the coexistence of three competing species with a shared pathogen,, Technical Report ORSTMATH1102, (2011), 11. Google Scholar 
[11] 
E. T. Borer, P. R. Hosseini, E. W. Seabloom and A. P. Dobson, Pathogeninduced reversal of native dominance in a grassland community,, Proc. Natl. Acad. Sci. U. S. A., 104 (2007), 5473. Google Scholar 
[12] 
R. G. Bowers and J. Turner, Community structure and the interplay between interspecific infection and competition,, J. Theor. Biol., 187 (1997), 95. doi: 10.1006/jtbi.1997.0418. Google Scholar 
[13] 
S. K. Collinge and C. Ray, "Disease Ecology: Community Structure and Pathogen Dynamics,", Oxford Univ. Press, (2006). Google Scholar 
[14] 
A. Dobson, Population dynamics of pathogens with multiple host species,, Am. Nat., 164 (2004). doi: 10.1086/424681. Google Scholar 
[15] 
R. Durrett, Mutual invadability implies coexistence in spatial models,, Mem. Am. Math. Soc., 156 (2002). Google Scholar 
[16] 
R. Durrett, Special invited paper: Coexistence in stochastic spatial models,, Ann. Appl. Probab., 19 (2009), 477. doi: 10.1214/08AAP590. Google Scholar 
[17] 
R. Durrett and C. Neuhauser, Coexistence results for some competition models,, Ann. Appl. Probab., 7 (1997), 10. Google Scholar 
[18] 
L. Gilbert, R. Norman, K. M. Laurenson, H. W. Reid and P. J. Hudson, Disease persistence and apparent competition in a threehost community: An empirical and analytical study of largescale, wild populations,, J. Anim. Ecol., 70 (2001), 1053. doi: 10.1046/j.00218790.2001.00558.x. Google Scholar 
[19] 
D. T. Gillespie, "Markov Processes: An Introduction for Physical Scientists,'', Academic Press, (1992). Google Scholar 
[20] 
J. V. Greenman and P. J. Hudson, Infected coexistence instability with and without densitydependent regulation,, J. Theor. Biol., 185 (1997), 345. doi: 10.1006/jtbi.1996.0309. Google Scholar 
[21] 
M. Griffiths and D. Greenhalgh, The probability of extinction in a bovine respiratory syncytial virus epidemic model,, Math. Biosci., 231 (2011), 144. doi: 10.1016/j.mbs.2011.02.011. Google Scholar 
[22] 
B. A. Han, "The Effects of an Emerging Pathogen on Amphibian Host Behaviors and Interactions,", Ph.D thesis, (2009). Google Scholar 
[23] 
L. Han, Z. Ma and T. Shi, An SIRS epidemic model of two competitive species,, Math. Comput. Model., 37 (2003), 87. doi: 10.1016/S08957177(03)800080. Google Scholar 
[24] 
L. Han and A. Pugliese, Epidemics in two competing species,, Nonlinear Anal. Real World Appl., 10 (2009), 723. doi: 10.1016/j.nonrwa.2007.11.005. Google Scholar 
[25] 
T. E. Harris, "The Theory of Branching Processes,'', Die Grundlehren der Mathematischen Wissenschaften, (1963). Google Scholar 
[26] 
M. J. Hatcher, J. T. A. Dick and A. M. Dunn, How parasites affect interactions between competitors and predators,, Ecol. Lett., 9 (2006), 1253. doi: 10.1111/j.14610248.2006.00964.x. Google Scholar 
[27] 
D. J. Higham, Modeling and simulating chemical reactions,, SIAM Rev., 50 (2008), 347. doi: 10.1137/060666457. Google Scholar 
[28] 
R. D. Holt and A. P. Dobson, Chapter 2: Extending the principles of community ecology to address the epidemiology of hostpathogen systems, in "Disease Ecology: Community Structure and Pathogen Dynamics" (eds. S. K. Collinge and C. Ray),, Oxford Univ. Press, (2006), 2. Google Scholar 
[29] 
R. D. Holt and J. Pickering, Infectious disease and species coexistence: A model of LotkaVolterra form,, Am. Nat., 126 (1985), 196. doi: 10.1086/284409. Google Scholar 
[30] 
P. Hudson and J. Greenman, Competition mediated by parasites: Biological and theoretical progress,, Trends Ecol. Evol., 13 (1998), 387. Google Scholar 
[31] 
P. Jagers, "Branching Processes with Biological Applications,'', Wiley Series in Probability and Mathematical Statistics Applied Probability and Statistics, (1975). Google Scholar 
[32] 
S. T. Karlin and H. M. Taylor, "A First Course in Stochastic Processes,'', 2^{nd} edition, (1975). Google Scholar 
[33] 
J. M. Kiesecker and A. R. Blaustein, Pathogen reverses competition between larval amphibians,, Ecology, 80 (1999), 2442. Google Scholar 
[34] 
P. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations,'', Applications of Mathematics (New York), 23 (1992). Google Scholar 
[35] 
N. Lanchier and C. Neuhauser, A spatially explicit model for competition among specialists and generalists in a heterogeneous environment,, Ann. Appl. Probab., 16 (2006), 1385. doi: 10.1214/105051606000000394. Google Scholar 
[36] 
N. Lanchier and C. Neuhauser, Stochastic spatial models of hostpathogen and hostmutualist interactions. I,, Ann. Appl. Probab., 16 (2006), 448. doi: 10.1214/105051605000000782. Google Scholar 
[37] 
C. A. Manore, "NonSpatial and Spatial Models for MultiHost Pathogen Spread in Competing Species: Applications to Barley Yellow Dwarf Virus and Rinderpest,", Ph.D thesis, (2012). Google Scholar 
[38] 
R. M. May and W. J. Leonard, Nonlinear aspects of competition between three species,, Special issue on mathematics and the social and biological sciences, 29 (1975), 243. doi: 10.1137/0129022. Google Scholar 
[39] 
H. McCallum, N. Barlow and J. Hone, How should pathogen transmission be modelled?,, Trends Ecol. Evol., 16 (2001), 295. doi: 10.1016/S01695347(01)021449. Google Scholar 
[40] 
R. K. McCormack, "MultiHost MultiPatch Mathematical Epidemic Models for Disease Emergence with Applications to Hantavirus in Wild Rodents,", Ph.D thesis, (2006). Google Scholar 
[41] 
R. K. McCormack and L. J. S. Allen, Stochastic SIS and SIR multihost epidemic models,, in, (2006), 775. Google Scholar 
[42] 
R. K. McCormack and L. J. S. Allen, Disease emergence in multihost epidemic models,, Math. Med. Biol., 24 (2007), 17. doi: 10.1093/imammb/dql021. Google Scholar 
[43] 
C. J. Mode, "Multitype Branching Processes. Theory and Applications,'', Modern Analytic and Computational Methods in Science and Mathematics, (1971). Google Scholar 
[44] 
S. M. Moore, C. A. Manore, V. A. Bokil, E. T. Borer and P. R. Hosseini, Spatiotemporal model of barley and cereal yellow dwarf virus transmission dynamics with seasonality and plant competition,, Bull. Math. Biol., 73 (2011), 2707. Google Scholar 
[45] 
C. Neuhauser and S. W. Pacala, An explicitly spatial version of the LotkaVolterra model with interspecific competition,, Ann. Appl. Probab., 9 (1999), 1226. Google Scholar 
[46] 
R. Norman, R. G. Bowers, M. Begon and P. J. Hudson, Persistence of tickborne virus in the presence of multiple host species: Tick reservoirs and parasite mediated competition,, J. Theor. Biol., 200 (1999), 111. doi: 10.1006/jtbi.1999.0982. Google Scholar 
[47] 
J. M. Ortega, "Matrix Theory. A Second Course,", The University Series in Mathematics, (1987). Google Scholar 
[48] 
S. Pénisson, "Conditional Limit Theorems for Multitype Branching Processes and Illustration in Epidemiological Risk Analysis,", Ph.D thesis, (2010). Google Scholar 
[49] 
R. A. Saenz and H. W. Hethcote, Competing species models with an infectious disease,, Math. Biosci. Eng., 3 (2006), 219. Google Scholar 
[50] 
D. M. Tompkins, R. A. H. Draycott and P. J. Hudson, Field evidence for apparent competition mediated via the shared parasites of two gamebird species,, Ecol. Lett., 3 (2000), 10. Google Scholar 
[51] 
D. M. Tompkins, A. R. White and M. Boots, Ecological replacement of native red squirrels by invasive greys driven by disease,, Ecol. Lett., 6 (2003), 189. Google Scholar 
[52] 
P. van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. Google Scholar 
[53] 
P. van den Driessche and M. L. Zeeman, Disease induced oscillations between two competing species,, SIAM J. Appl. Dyn. Sys., 3 (2004), 601. Google Scholar 
[54] 
E. Venturino, The effects of diseases on competing species,, Math. Biosci., 174 (2001), 111. doi: 10.1016/S00255564(01)000815. Google Scholar 
[55] 
P. Whittle, The outcome of a stochastic epidemic: A note on Bailey's paper,, Biometrika, 42 (1955), 116. doi: 10.2307/2333427. Google Scholar 
[56] 
E. C. Zeeman and M. L. Zeeman, From local to global behavior in competitive LotkaVolterra systems,, Trans. Am. Math. Soc., 355 (2003), 713. doi: 10.1090/S0002994702031033. Google Scholar 
[1] 
Vladimir Kazakov. Sampling  reconstruction procedure with jitter of markov continuous processes formed by stochastic differential equations of the first order. Conference Publications, 2009, 2009 (Special) : 433441. doi: 10.3934/proc.2009.2009.433 
[2] 
Felix X.F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete & Continuous Dynamical Systems  B, 2016, 21 (7) : 23372361. doi: 10.3934/dcdsb.2016050 
[3] 
Artur Stephan, Holger Stephan. Memory equations as reduced Markov processes. Discrete & Continuous Dynamical Systems  A, 2019, 39 (4) : 21332155. doi: 10.3934/dcds.2019089 
[4] 
H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 125. doi: 10.3934/mbe.2012.9.1 
[5] 
Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems  A, 2009, 24 (3) : 10051023. doi: 10.3934/dcds.2009.24.1005 
[6] 
Demetris Hadjiloucas. Stochastic matrixvalued cocycles and nonhomogeneous Markov chains. Discrete & Continuous Dynamical Systems  A, 2007, 17 (4) : 731738. doi: 10.3934/dcds.2007.17.731 
[7] 
Lakhdar Aggoun, Lakdere Benkherouf. A Markov modulated continuoustime capturerecapture population estimation model. Discrete & Continuous Dynamical Systems  B, 2005, 5 (4) : 10571075. doi: 10.3934/dcdsb.2005.5.1057 
[8] 
Yayun Zheng, Xu Sun. Governing equations for Probability densities of stochastic differential equations with discrete time delays. Discrete & Continuous Dynamical Systems  B, 2017, 22 (9) : 36153628. doi: 10.3934/dcdsb.2017182 
[9] 
Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistencetime estimation for some stochastic SIS epidemic models. Discrete & Continuous Dynamical Systems  B, 2015, 20 (9) : 29332947. doi: 10.3934/dcdsb.2015.20.2933 
[10] 
David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete & Continuous Dynamical Systems  A, 2018, 38 (6) : 30993138. doi: 10.3934/dcds.2018135 
[11] 
Jiaohui Xu, Tomás Caraballo. Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete & Continuous Dynamical Systems  B, 2019, 24 (6) : 27192743. doi: 10.3934/dcdsb.2018272 
[12] 
Yulan Lu, Minghui Song, Mingzhu Liu. Convergence rate and stability of the splitstep theta method for stochastic differential equations with piecewise continuous arguments. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 695717. doi: 10.3934/dcdsb.2018203 
[13] 
Yijun Lou, XiaoQiang Zhao. Threshold dynamics in a timedelayed periodic SIS epidemic model. Discrete & Continuous Dynamical Systems  B, 2009, 12 (1) : 169186. doi: 10.3934/dcdsb.2009.12.169 
[14] 
András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 4358. doi: 10.3934/nhm.2012.7.43 
[15] 
Wael Bahsoun, Paweł Góra. SRB measures for certain Markov processes. Discrete & Continuous Dynamical Systems  A, 2011, 30 (1) : 1737. doi: 10.3934/dcds.2011.30.17 
[16] 
Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics & Games, 2014, 1 (4) : 639659. doi: 10.3934/jdg.2014.1.639 
[17] 
Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 114. doi: 10.3934/jmd.2014.8.1 
[18] 
Linyi Qian, Wei Wang, Rongming Wang. Riskminimizing portfolio selection for insurance payment processes under a Markovmodulated model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 411429. doi: 10.3934/jimo.2013.9.411 
[19] 
Zhenzhong Zhang, Enhua Zhang, Jinying Tong. Necessary and sufficient conditions for ergodicity of CIR model driven by stable processes with Markov switching. Discrete & Continuous Dynamical Systems  B, 2018, 23 (6) : 24332455. doi: 10.3934/dcdsb.2018053 
[20] 
Junhao Hu, Chenggui Yuan. Strong convergence of neutral stochastic functional differential equations with two timescales. Discrete & Continuous Dynamical Systems  B, 2019, 24 (11) : 58315848. doi: 10.3934/dcdsb.2019108 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]