December  2012, 32(12): 4149-4170. doi: 10.3934/dcds.2012.32.4149

On essential coexistence of zero and nonzero Lyapunov exponents

1. 

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, United States

Received  March 2011 Revised  May 2012 Published  August 2012

We show that there exists a $C^\infty$ volume preserving diffeomorphism $P$ of a compact smooth Riemannian manifold $\mathcal{M}$ of dimension 4, which is close to the identity map and has nonzero Lyapunov exponents on an open and dense subset $\mathcal{G}$ of not full measure and has zero Lyapunov exponent on the complement of $\mathcal{G}$. Moreover, $P|\mathcal{G}$ has countably many disjoint open ergodic components.
Citation: Jianyu Chen. On essential coexistence of zero and nonzero Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4149-4170. doi: 10.3934/dcds.2012.32.4149
References:
[1]

L. Barreira and Ya. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory,", Univ. Lect. Series, 23 (2002). Google Scholar

[2]

L. A. Bunimovich, Mushrooms and other billiards with divided phase space,, Chaos, 11 (2001), 802. doi: 10.1063/1.1418763. Google Scholar

[3]

C.-Q. Cheng and Y.-S. Sun, Existence of invariant tori in three dimensional measure-preserving mappings,, Celestial Mech. Dynam. Astronom., 47 (): 275. Google Scholar

[4]

D. Dolgopyat, H. Hu and Ya. Pesin, An example of a smooth hyperbolic measure with countably many ergodic components,, Appendix to, (2001), 95. Google Scholar

[5]

V. Donnay, Geodesic flow on the two-sphere. I. Positive measure entropy,, Ergod. Th. Dynam. Syst., 8 (1988), 531. Google Scholar

[6]

V. Donnay and C. Liverani, Potentials on the two-torus for which the Hamiltonian flow is ergodic,, Comm. Math. Phys. 135 (1991), 135 (1991), 267. Google Scholar

[7]

P. Duarte, Plenty of elliptic islands for the standard family of area preserving maps,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 11 (1994), 359. Google Scholar

[8]

P. Duarte, Elliptic Isles in families of area preserving maps,, Ergod. Th. Dynam. Syst., 28 (2008), 1781. doi: 10.1017/S0143385707000983. Google Scholar

[9]

A. Gorodetski, On stochastic sea of the standard map,, Comm. Math. Phys. 309 (2012), 309 (2012), 155. Google Scholar

[10]

M. Herman, Stabilité Topologique des systémes dynamiques conservatifs,, [Topological stability of conservative dynamical systems], (1990). Google Scholar

[11]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Springer-Verlag, (1977). Google Scholar

[12]

H. Hu, Ya. Pesin and A. Talitskaya, A volume preserving diffeomorphism with essential coexistence of zero and nonzero Lyapunov exponents,, to appear in Comm. Math. Phys. Available from: , (). Google Scholar

[13]

H. Hu and A. Talitskaya, A hyperbolic diffeomorphism with countably many ergodic components near identity,, preprint, (2002). Google Scholar

[14]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, "Ergodic Theory,", Springer-Verlag, (1982). Google Scholar

[15]

C. Liverani, Birth of an elliptic island in a chaotic sea,, Math. Phys. Electron. J., 10 (2004). Google Scholar

[16]

Ya. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55. doi: 10.1070/RM1977v032n04ABEH001639. Google Scholar

[17]

Ya. Pesin, Existence and genericity problems for dynamical systems with nonzero Lyapunov exponents,, Regul. Chaotic Dyn., 12 (2007), 476. doi: 10.1134/S1560354707050024. Google Scholar

[18]

F. Przytycki, Examples of conservative diffeomorphisms of the two-dimensional torus with coexistence of elliptic and stochastic behaviour,, Ergod. Th. Dynam. Syst. 2 (1982), 2 (1982), 439. Google Scholar

[19]

C. Pugh and M. Shub, Stably ergodic dynamical systems and partial hyperbolicity,, J. Complexity 13 (1997), 13 (1997), 125. Google Scholar

[20]

Ya. Sinai, "Topics in Ergodic Theory,", Princeton University Press, (1994). Google Scholar

[21]

J.-M. Strelcyn, The "coexistence problem" for conservative dynamical systems: a review,, Colloq. Math. 62 (1991), 62 (1991), 331. Google Scholar

[22]

M. Wojtkowski, A model problem with the coexistence of stochastic and integrable behavior,, Comm. Math. Phys., 80 (1981), 453. doi: 10.1007/BF01941656. Google Scholar

[23]

M. Wojtkowski, On the ergodic properties of piecewise linear perturbations of the twist map,, Ergod. Th. Dynam. Syst., 2 (1982), 525. Google Scholar

[24]

Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms,, Ergod. Th. Dynam. Syst., 12 (1992), 621. doi: 10.1017/S0143385700006969. Google Scholar

[25]

J.-C. Yoccoz, Travaux de Herman sur les tores invariants,, (French) [Works of Herman on invariant tori], 206 (1992), 311. Google Scholar

show all references

References:
[1]

L. Barreira and Ya. Pesin, "Lyapunov Exponents and Smooth Ergodic Theory,", Univ. Lect. Series, 23 (2002). Google Scholar

[2]

L. A. Bunimovich, Mushrooms and other billiards with divided phase space,, Chaos, 11 (2001), 802. doi: 10.1063/1.1418763. Google Scholar

[3]

C.-Q. Cheng and Y.-S. Sun, Existence of invariant tori in three dimensional measure-preserving mappings,, Celestial Mech. Dynam. Astronom., 47 (): 275. Google Scholar

[4]

D. Dolgopyat, H. Hu and Ya. Pesin, An example of a smooth hyperbolic measure with countably many ergodic components,, Appendix to, (2001), 95. Google Scholar

[5]

V. Donnay, Geodesic flow on the two-sphere. I. Positive measure entropy,, Ergod. Th. Dynam. Syst., 8 (1988), 531. Google Scholar

[6]

V. Donnay and C. Liverani, Potentials on the two-torus for which the Hamiltonian flow is ergodic,, Comm. Math. Phys. 135 (1991), 135 (1991), 267. Google Scholar

[7]

P. Duarte, Plenty of elliptic islands for the standard family of area preserving maps,, Ann. Inst. H. Poincaré Anal. Non Lineaire, 11 (1994), 359. Google Scholar

[8]

P. Duarte, Elliptic Isles in families of area preserving maps,, Ergod. Th. Dynam. Syst., 28 (2008), 1781. doi: 10.1017/S0143385707000983. Google Scholar

[9]

A. Gorodetski, On stochastic sea of the standard map,, Comm. Math. Phys. 309 (2012), 309 (2012), 155. Google Scholar

[10]

M. Herman, Stabilité Topologique des systémes dynamiques conservatifs,, [Topological stability of conservative dynamical systems], (1990). Google Scholar

[11]

M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds,", Springer-Verlag, (1977). Google Scholar

[12]

H. Hu, Ya. Pesin and A. Talitskaya, A volume preserving diffeomorphism with essential coexistence of zero and nonzero Lyapunov exponents,, to appear in Comm. Math. Phys. Available from: , (). Google Scholar

[13]

H. Hu and A. Talitskaya, A hyperbolic diffeomorphism with countably many ergodic components near identity,, preprint, (2002). Google Scholar

[14]

I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, "Ergodic Theory,", Springer-Verlag, (1982). Google Scholar

[15]

C. Liverani, Birth of an elliptic island in a chaotic sea,, Math. Phys. Electron. J., 10 (2004). Google Scholar

[16]

Ya. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory,, Russian Math. Surveys, 32 (1977), 55. doi: 10.1070/RM1977v032n04ABEH001639. Google Scholar

[17]

Ya. Pesin, Existence and genericity problems for dynamical systems with nonzero Lyapunov exponents,, Regul. Chaotic Dyn., 12 (2007), 476. doi: 10.1134/S1560354707050024. Google Scholar

[18]

F. Przytycki, Examples of conservative diffeomorphisms of the two-dimensional torus with coexistence of elliptic and stochastic behaviour,, Ergod. Th. Dynam. Syst. 2 (1982), 2 (1982), 439. Google Scholar

[19]

C. Pugh and M. Shub, Stably ergodic dynamical systems and partial hyperbolicity,, J. Complexity 13 (1997), 13 (1997), 125. Google Scholar

[20]

Ya. Sinai, "Topics in Ergodic Theory,", Princeton University Press, (1994). Google Scholar

[21]

J.-M. Strelcyn, The "coexistence problem" for conservative dynamical systems: a review,, Colloq. Math. 62 (1991), 62 (1991), 331. Google Scholar

[22]

M. Wojtkowski, A model problem with the coexistence of stochastic and integrable behavior,, Comm. Math. Phys., 80 (1981), 453. doi: 10.1007/BF01941656. Google Scholar

[23]

M. Wojtkowski, On the ergodic properties of piecewise linear perturbations of the twist map,, Ergod. Th. Dynam. Syst., 2 (1982), 525. Google Scholar

[24]

Z. Xia, Existence of invariant tori in volume-preserving diffeomorphisms,, Ergod. Th. Dynam. Syst., 12 (1992), 621. doi: 10.1017/S0143385700006969. Google Scholar

[25]

J.-C. Yoccoz, Travaux de Herman sur les tores invariants,, (French) [Works of Herman on invariant tori], 206 (1992), 311. Google Scholar

[1]

Carlos H. Vásquez. Stable ergodicity for partially hyperbolic attractors with positive central Lyapunov exponents. Journal of Modern Dynamics, 2009, 3 (2) : 233-251. doi: 10.3934/jmd.2009.3.233

[2]

Andrey Gogolev, Ali Tahzibi. Center Lyapunov exponents in partially hyperbolic dynamics. Journal of Modern Dynamics, 2014, 8 (3&4) : 549-576. doi: 10.3934/jmd.2014.8.549

[3]

Keith Burns, Dmitry Dolgopyat, Yakov Pesin, Mark Pollicott. Stable ergodicity for partially hyperbolic attractors with negative central exponents. Journal of Modern Dynamics, 2008, 2 (1) : 63-81. doi: 10.3934/jmd.2008.2.63

[4]

Boris Kalinin, Victoria Sadovskaya. Lyapunov exponents of cocycles over non-uniformly hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5105-5118. doi: 10.3934/dcds.2018224

[5]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[6]

Edson de Faria, Pablo Guarino. Real bounds and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1957-1982. doi: 10.3934/dcds.2016.36.1957

[7]

Andy Hammerlindl. Integrability and Lyapunov exponents. Journal of Modern Dynamics, 2011, 5 (1) : 107-122. doi: 10.3934/jmd.2011.5.107

[8]

Sebastian J. Schreiber. Expansion rates and Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 433-438. doi: 10.3934/dcds.1997.3.433

[9]

Mauricio Poletti. Stably positive Lyapunov exponents for symplectic linear cocycles over partially hyperbolic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5163-5188. doi: 10.3934/dcds.2018228

[10]

Keith Burns, Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Anna Talitskaya, Raúl Ures. Density of accessibility for partially hyperbolic diffeomorphisms with one-dimensional center. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 75-88. doi: 10.3934/dcds.2008.22.75

[11]

Dubi Kelmer. Quantum ergodicity for products of hyperbolic planes. Journal of Modern Dynamics, 2008, 2 (2) : 287-313. doi: 10.3934/jmd.2008.2.287

[12]

Chao Liang, Wenxiang Sun, Jiagang Yang. Some results on perturbations of Lyapunov exponents. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4287-4305. doi: 10.3934/dcds.2012.32.4287

[13]

Shrihari Sridharan, Atma Ram Tiwari. The dependence of lyapunov exponents of polynomials on their coefficients. Journal of Computational Dynamics, 2018, 0 (0) : 1-15. doi: 10.3934/jcd.2019004

[14]

Yongluo Cao, Stefano Luzzatto, Isabel Rios. Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 61-71. doi: 10.3934/dcds.2006.15.61

[15]

F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi and R. Ures. A criterion for ergodicity for non-uniformly hyperbolic diffeomorphisms. Electronic Research Announcements, 2007, 14: 74-81. doi: 10.3934/era.2007.14.74

[16]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

[17]

Wilhelm Schlag. Regularity and convergence rates for the Lyapunov exponents of linear cocycles. Journal of Modern Dynamics, 2013, 7 (4) : 619-637. doi: 10.3934/jmd.2013.7.619

[18]

Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187

[19]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[20]

Fei Yu, Kang Zuo. Weierstrass filtration on Teichmüller curves and Lyapunov exponents. Journal of Modern Dynamics, 2013, 7 (2) : 209-237. doi: 10.3934/jmd.2013.7.209

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]