2012, 19: 77-85. doi: 10.3934/era.2012.19.77

Upper bounds for Steklov eigenvalues on surfaces

1. 

Laboratoire de Mathématiques (LAMA), Université de Savoie campus scientifique, 73376 Le Bourget-du-Lac, France

2. 

Département de Mathématiques et de Statistique, Université de Montréal, C. P. 6128, Succ. Centre-ville, Montréal, Québec, H3C 3J7, Canada

Received  March 2012 Published  August 2012

We give explicit isoperimetric upper bounds for all Steklov eigenvalues of a compact orientable surface with boundary, in terms of the genus, the length of the boundary, and the number of boundary components. Our estimates generalize a recent result of Fraser-Schoen, as well as the classical inequalites obtained by Hersch-Payne-Schiffer, whose approach is used in the present paper.
Citation: Alexandre Girouard, Iosif Polterovich. Upper bounds for Steklov eigenvalues on surfaces. Electronic Research Announcements, 2012, 19: 77-85. doi: 10.3934/era.2012.19.77
References:
[1]

Lars L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions,, Comment. Math. Helv., 24 (1950), 100. doi: 10.1007/BF02567028.

[2]

Catherine Bandle, "Isoperimetric Inequalities and Applications," Monographs and Studies in Mathematics, 7,, Pitman, (1980).

[3]

Friedemann Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem,, Z. Angew. Math. Mech., 81 (2001), 69. doi: 10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-#.

[4]

Robert Brooks and Eran Makover, Riemann surfaces with large first eigenvalue,, J. Anal. Math., 83 (2001), 243. doi: 10.1007/BF02790263.

[5]

Peter Buser, On the bipartition of graphs,, Discrete Appl. Math., 9 (1984), 105.

[6]

Alberto P. Calderón, On an inverse boundary value problem,, in, (1980).

[7]

Bruno Colbois, Ahmad El Soufi and Alexandre Girouard, Isoperimetric control of the Steklov spectrum,, J. Funct. Anal., 261 (2011), 1384. doi: 10.1016/j.jfa.2011.05.006.

[8]

Ahmad El Soufi and Saïd Ilias, Le volume conforme et ses applications d'après Li et Yau,, in, (1984), 1983.

[9]

José F. Escobar, An isoperimetric inequality and the first Steklov eigenvalue,, J. Funct. Anal., 165 (1999), 101. doi: 10.1006/jfan.1999.3402.

[10]

Ailana Fraser and Richard Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces,, Adv. Math., 226 (2011), 4011. doi: 10.1016/j.aim.2010.11.007.

[11]

Alexandre Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes,, Comment. Math. Helv., 81 (2006), 945. doi: 10.4171/CMH/82.

[12]

Alexandre Girouard and Iosif Polterovich, On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem,, Funktsional. Anal. i Prilozhen., 44 (2010), 33.

[13]

Alexander Grigor'yan, Yuri Netrusov and Shing-Tung Yau, Eigenvalues of elliptic operators and geometric applications,, in, (2004).

[14]

Asma Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem,, Journal of Functional Analysis, 261 (2011), 3419. doi: 10.1016/j.jfa.2011.08.003.

[15]

Antoine Henrot, Gérard A. Philippin and Abdessamad Safoui, Some isoperimetric inequalities with application to the Stekloff problem,, J. Convex Anal., 15 (2008), 581.

[16]

Joseph Hersch, Lawrence E. Payne and Menahem M. Schiffer, Some inequalities for Stekloff eigenvalues,, Arch. Rational Mech. Anal., 57 (1975), 99.

[17]

Gerasim Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces,, preprint, (2011).

[18]

Nicholas Korevaar, Upper bounds for eigenvalues of conformal metrics,, J. Differential Geom., 37 (1993), 73.

[19]

Matti Lassas, Michael Taylor and Gunther Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary,, Comm. Anal. Geom., 11 (2003), 207.

[20]

Michael E. Taylor, "Partial Differential Equations. II," Applied Mathematical Sciences, 116,, Springer-Verlag, (1996).

[21]

Robert Weinstock, Inequalities for a classical eigenvalue problem,, J. Rational Mech. Anal., 3 (1954), 745.

[22]

Lewis Wheeler and Cornelius O. Horgan, Isoperimetric bounds on the lowest nonzero Stekloff eigenvalue for plane strip domains,, SIAM J. Appl. Math., 31 (1976), 385. doi: 10.1137/0131032.

[23]

Paul C. Yang and Shing-Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 55.

show all references

References:
[1]

Lars L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions,, Comment. Math. Helv., 24 (1950), 100. doi: 10.1007/BF02567028.

[2]

Catherine Bandle, "Isoperimetric Inequalities and Applications," Monographs and Studies in Mathematics, 7,, Pitman, (1980).

[3]

Friedemann Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem,, Z. Angew. Math. Mech., 81 (2001), 69. doi: 10.1002/1521-4001(200101)81:1<69::AID-ZAMM69>3.0.CO;2-#.

[4]

Robert Brooks and Eran Makover, Riemann surfaces with large first eigenvalue,, J. Anal. Math., 83 (2001), 243. doi: 10.1007/BF02790263.

[5]

Peter Buser, On the bipartition of graphs,, Discrete Appl. Math., 9 (1984), 105.

[6]

Alberto P. Calderón, On an inverse boundary value problem,, in, (1980).

[7]

Bruno Colbois, Ahmad El Soufi and Alexandre Girouard, Isoperimetric control of the Steklov spectrum,, J. Funct. Anal., 261 (2011), 1384. doi: 10.1016/j.jfa.2011.05.006.

[8]

Ahmad El Soufi and Saïd Ilias, Le volume conforme et ses applications d'après Li et Yau,, in, (1984), 1983.

[9]

José F. Escobar, An isoperimetric inequality and the first Steklov eigenvalue,, J. Funct. Anal., 165 (1999), 101. doi: 10.1006/jfan.1999.3402.

[10]

Ailana Fraser and Richard Schoen, The first Steklov eigenvalue, conformal geometry, and minimal surfaces,, Adv. Math., 226 (2011), 4011. doi: 10.1016/j.aim.2010.11.007.

[11]

Alexandre Gabard, Sur la représentation conforme des surfaces de Riemann à bord et une caractérisation des courbes séparantes,, Comment. Math. Helv., 81 (2006), 945. doi: 10.4171/CMH/82.

[12]

Alexandre Girouard and Iosif Polterovich, On the Hersch-Payne-Schiffer estimates for the eigenvalues of the Steklov problem,, Funktsional. Anal. i Prilozhen., 44 (2010), 33.

[13]

Alexander Grigor'yan, Yuri Netrusov and Shing-Tung Yau, Eigenvalues of elliptic operators and geometric applications,, in, (2004).

[14]

Asma Hassannezhad, Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem,, Journal of Functional Analysis, 261 (2011), 3419. doi: 10.1016/j.jfa.2011.08.003.

[15]

Antoine Henrot, Gérard A. Philippin and Abdessamad Safoui, Some isoperimetric inequalities with application to the Stekloff problem,, J. Convex Anal., 15 (2008), 581.

[16]

Joseph Hersch, Lawrence E. Payne and Menahem M. Schiffer, Some inequalities for Stekloff eigenvalues,, Arch. Rational Mech. Anal., 57 (1975), 99.

[17]

Gerasim Kokarev, Variational aspects of Laplace eigenvalues on Riemannian surfaces,, preprint, (2011).

[18]

Nicholas Korevaar, Upper bounds for eigenvalues of conformal metrics,, J. Differential Geom., 37 (1993), 73.

[19]

Matti Lassas, Michael Taylor and Gunther Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary,, Comm. Anal. Geom., 11 (2003), 207.

[20]

Michael E. Taylor, "Partial Differential Equations. II," Applied Mathematical Sciences, 116,, Springer-Verlag, (1996).

[21]

Robert Weinstock, Inequalities for a classical eigenvalue problem,, J. Rational Mech. Anal., 3 (1954), 745.

[22]

Lewis Wheeler and Cornelius O. Horgan, Isoperimetric bounds on the lowest nonzero Stekloff eigenvalue for plane strip domains,, SIAM J. Appl. Math., 31 (1976), 385. doi: 10.1137/0131032.

[23]

Paul C. Yang and Shing-Tung Yau, Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7 (1980), 55.

[1]

Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089

[2]

Eugenia Pérez. On periodic Steklov type eigenvalue problems on half-bands and the spectral homogenization problem. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 859-883. doi: 10.3934/dcdsb.2007.7.859

[3]

Robert Brooks and Eran Makover. The first eigenvalue of a Riemann surface. Electronic Research Announcements, 1999, 5: 76-81.

[4]

Erwann Delay, Pieralberto Sicbaldi. Extremal domains for the first eigenvalue in a general compact Riemannian manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5799-5825. doi: 10.3934/dcds.2015.35.5799

[5]

Vincenzo Ferone, Carlo Nitsch, Cristina Trombetti. On a conjectured reverse Faber-Krahn inequality for a Steklov--type Laplacian eigenvalue. Communications on Pure & Applied Analysis, 2015, 14 (1) : 63-82. doi: 10.3934/cpaa.2015.14.63

[6]

Yuhua Sun. On the uniqueness of nonnegative solutions of differential inequalities with gradient terms on Riemannian manifolds. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1743-1757. doi: 10.3934/cpaa.2015.14.1743

[7]

Wolfgang Arendt, Rafe Mazzeo. Friedlander's eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2201-2212. doi: 10.3934/cpaa.2012.11.2201

[8]

Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure & Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701

[9]

Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 619-629. doi: 10.3934/dcdss.2016016

[10]

David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems & Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004

[11]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[12]

Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845

[13]

Jean-Michel Rakotoson. Generalized eigenvalue problem for totally discontinuous operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 343-373. doi: 10.3934/dcds.2010.28.343

[14]

Huan Gao, Zhibao Li, Haibin Zhang. A fast continuous method for the extreme eigenvalue problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1587-1599. doi: 10.3934/jimo.2017008

[15]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[16]

Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems & Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025

[17]

Anna Maria Candela, J.L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold. Conference Publications, 2003, 2003 (Special) : 173-181. doi: 10.3934/proc.2003.2003.173

[18]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[19]

Bo Guan, Heming Jiao. The Dirichlet problem for Hessian type elliptic equations on Riemannian manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 701-714. doi: 10.3934/dcds.2016.36.701

[20]

Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2063-2084. doi: 10.3934/cpaa.2018098

2016 Impact Factor: 0.483

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]