2013, 33(1): 173-191. doi: 10.3934/dcds.2013.33.173

A class of singular first order differential equations with applications in reaction-diffusion

1. 

Area Departamental de Matemática, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1 - 1950-062 Lisboa, Portugal

2. 

Dipartimento di Matematica Pura ed Applicata, Univ. di Modena e Reggio Emilia, Via Campi, 213b, 41100 Modena, Italy

3. 

Faculdade de Ciências da Universidade de Lisboa, CMAF, Avenida Professor Gama Pinto 2, 1649-003 Lisboa, Portugal

Received  August 2011 Revised  February 2012 Published  September 2012

We study positive solutions $y(u)$ for the first order differential equation $$y'=q(c\,{y}^{\frac{1}{p}}-f(u))$$ where $c>0$ is a parameter, $p>1$ and $q>1$ are conjugate numbers and $f$ is a continuous function in $[0,1]$ such that $f(0)=0=f(1)$. We shall be particularly concerned with positive solutions $y(u)$ such that $y(0)=0=y(1)$. Our motivation lies in the fact that this problem provides a model for the existence of travelling wave solutions for analogues of the FKPP equation in one space dimension, where diffusion is represented by the $p$-Laplacian operator. We obtain a theory of admissible velocities and some other features that generalize classical and recent results, established for $p=2$.
Citation: Ricardo Enguiça, Andrea Gavioli, Luís Sanchez. A class of singular first order differential equations with applications in reaction-diffusion. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 173-191. doi: 10.3934/dcds.2013.33.173
References:
[1]

M. Arias, J. Campos and C. Marcelli, Fastness and continuous dependence in front propagation in Fisher-KPP equations,, Discrete and Continuous Dynamical Systems Series B, 11 (2009), 11.

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33. doi: 10.1016/0001-8708(78)90130-5.

[3]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders,, Annales de l'Institut Henri Poincare- Analyse non lineaire, 9 (1992), 497.

[4]

D. Bonheure and L. Sanchez, "Heteroclinic Orbits For Some Classes of Second and Fourth Order Differential Equations,'', Handbook of Differential Equations: Ordinary Differential Equations, 3 (2006). doi: 10.1016/S1874-5725(06)80006-4.

[5]

B. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction,'', Progress in Nonlinear Differential Equations and their Applications, (2004).

[6]

A. Hamydy, Travelling wave for absorption-convection-diffusion equations,, Electronic Journal of Diff. Eq., 2006 (2006), 1.

[7]

A. Sánchez-Valdés and B. Hernández-Bermejo, New travelling wave solutions for the Fisher-KPP equation with general exponents,, Appl. Math. Lett., 18 (2005), 1281. doi: 10.1016/j.aml.2005.02.016.

[8]

X. Hou, Y. Li and K. Meyer, Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities,, Discrete and Contininuous Dynamical Systems, 26 (2010), 265.

[9]

A. Kolmogorov, I. Petrovski and N. Piscounov, Etude de l'équation de la diffusion avec croissance de la quantité de matiére et son application à un probléme biologique,, Bull. Univ. Moskou Ser. Internat. Sec. A, 1 (1937), 1.

[10]

P. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1175. doi: 10.3934/dcdsb.2006.6.1175.

[11]

P. Maini, L. Malaguti, C. Marcelli and S. Matucci, Aggregative movement and front propagation for bi-stable population models,, Math. Models Methods Appl. Sci., 17 (2007), 1351. doi: 10.1142/S0218202507002303.

[12]

F. Sánchez-Garduño, P. Maini and J. Pérez-Velázquez, A non-linear degenerate equation for direct aggregation and traveling wave dynamics,, Discrete and Continuous Dynamical Systems Series B, 13 (2010), 455.

[13]

F. Sánchez-Garduño and P. Maini, Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations,, Journal of Mathematical Biology, 33 (1994), 163. doi: 10.1007/BF00160178.

[14]

L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms,, Math. Nachr., 242 (2002), 148. doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J.

[15]

L. Malaguti and C. Marcelli, Sharp Profiles in degenerate and doubly degenerate Fisher-KPP equations,, Journal of Differential Equations, 195 (2003), 471. doi: 10.1016/j.jde.2003.06.005.

[16]

P. Pang, Y. Wang and J. Yin, Periodic solutions for a class od reaction-diffusion equations with $p$-Laplacian,, Nonlinear Analysis: Real World Applications, 11 (2010), 323. doi: 10.1016/j.nonrwa.2008.11.006.

show all references

References:
[1]

M. Arias, J. Campos and C. Marcelli, Fastness and continuous dependence in front propagation in Fisher-KPP equations,, Discrete and Continuous Dynamical Systems Series B, 11 (2009), 11.

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33. doi: 10.1016/0001-8708(78)90130-5.

[3]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders,, Annales de l'Institut Henri Poincare- Analyse non lineaire, 9 (1992), 497.

[4]

D. Bonheure and L. Sanchez, "Heteroclinic Orbits For Some Classes of Second and Fourth Order Differential Equations,'', Handbook of Differential Equations: Ordinary Differential Equations, 3 (2006). doi: 10.1016/S1874-5725(06)80006-4.

[5]

B. Gilding and R. Kersner, "Travelling Waves in Nonlinear Diffusion-Convection Reaction,'', Progress in Nonlinear Differential Equations and their Applications, (2004).

[6]

A. Hamydy, Travelling wave for absorption-convection-diffusion equations,, Electronic Journal of Diff. Eq., 2006 (2006), 1.

[7]

A. Sánchez-Valdés and B. Hernández-Bermejo, New travelling wave solutions for the Fisher-KPP equation with general exponents,, Appl. Math. Lett., 18 (2005), 1281. doi: 10.1016/j.aml.2005.02.016.

[8]

X. Hou, Y. Li and K. Meyer, Traveling wave solutions for a reaction diffusion equation with double degenerate nonlinearities,, Discrete and Contininuous Dynamical Systems, 26 (2010), 265.

[9]

A. Kolmogorov, I. Petrovski and N. Piscounov, Etude de l'équation de la diffusion avec croissance de la quantité de matiére et son application à un probléme biologique,, Bull. Univ. Moskou Ser. Internat. Sec. A, 1 (1937), 1.

[10]

P. Maini, L. Malaguti, C. Marcelli and S. Matucci, Diffusion-aggregation processes with mono-stable reaction terms,, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 1175. doi: 10.3934/dcdsb.2006.6.1175.

[11]

P. Maini, L. Malaguti, C. Marcelli and S. Matucci, Aggregative movement and front propagation for bi-stable population models,, Math. Models Methods Appl. Sci., 17 (2007), 1351. doi: 10.1142/S0218202507002303.

[12]

F. Sánchez-Garduño, P. Maini and J. Pérez-Velázquez, A non-linear degenerate equation for direct aggregation and traveling wave dynamics,, Discrete and Continuous Dynamical Systems Series B, 13 (2010), 455.

[13]

F. Sánchez-Garduño and P. Maini, Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations,, Journal of Mathematical Biology, 33 (1994), 163. doi: 10.1007/BF00160178.

[14]

L. Malaguti and C. Marcelli, Travelling wavefronts in reaction-diffusion equations with convection effects and non-regular terms,, Math. Nachr., 242 (2002), 148. doi: 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO;2-J.

[15]

L. Malaguti and C. Marcelli, Sharp Profiles in degenerate and doubly degenerate Fisher-KPP equations,, Journal of Differential Equations, 195 (2003), 471. doi: 10.1016/j.jde.2003.06.005.

[16]

P. Pang, Y. Wang and J. Yin, Periodic solutions for a class od reaction-diffusion equations with $p$-Laplacian,, Nonlinear Analysis: Real World Applications, 11 (2010), 323. doi: 10.1016/j.nonrwa.2008.11.006.

[1]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[2]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[3]

Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683

[4]

Jing Li, Yifu Wang, Jingxue Yin. Non-sharp travelling waves for a dual porous medium equation. Communications on Pure & Applied Analysis, 2016, 15 (2) : 623-636. doi: 10.3934/cpaa.2016.15.623

[5]

Nicholas J. Kass, Mohammad A. Rammaha. Local and global existence of solutions to a strongly damped wave equation of the $ p $-Laplacian type. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1449-1478. doi: 10.3934/cpaa.2018070

[6]

Neal Bez, Chris Jeavons. A sharp Sobolev-Strichartz estimate for the wave equation. Electronic Research Announcements, 2015, 22: 46-54. doi: 10.3934/era.2015.22.46

[7]

Carl-Friedrich Kreiner, Johannes Zimmer. Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 915-931. doi: 10.3934/dcds.2009.25.915

[8]

Carlo Mercuri, Michel Willem. A global compactness result for the p-Laplacian involving critical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 469-493. doi: 10.3934/dcds.2010.28.469

[9]

Kerstin Does. An evolution equation involving the normalized $P$-Laplacian. Communications on Pure & Applied Analysis, 2011, 10 (1) : 361-396. doi: 10.3934/cpaa.2011.10.361

[10]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[11]

Marek Fila, Michael Winkler. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Communications on Pure & Applied Analysis, 2015, 14 (1) : 107-119. doi: 10.3934/cpaa.2015.14.107

[12]

Christopher K. R. T. Jones, Robert Marangell. The spectrum of travelling wave solutions to the Sine-Gordon equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 925-937. doi: 10.3934/dcdss.2012.5.925

[13]

A. Ducrot. Travelling wave solutions for a scalar age-structured equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 251-273. doi: 10.3934/dcdsb.2007.7.251

[14]

Zhaoquan Xu, Jiying Ma. Monotonicity, asymptotics and uniqueness of travelling wave solution of a non-local delayed lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5107-5131. doi: 10.3934/dcds.2015.35.5107

[15]

Maurizio Grasselli, Vittorino Pata. On the damped semilinear wave equation with critical exponent. Conference Publications, 2003, 2003 (Special) : 351-358. doi: 10.3934/proc.2003.2003.351

[16]

Qingfang Wang. The Nehari manifold for a fractional Laplacian equation involving critical nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2261-2281. doi: 10.3934/cpaa.2018108

[17]

Michael Filippakis, Alexandru Kristály, Nikolaos S. Papageorgiou. Existence of five nonzero solutions with exact sign for a $p$-Laplacian equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 405-440. doi: 10.3934/dcds.2009.24.405

[18]

Pelin G. Geredeli, Azer Khanmamedov. Long-time dynamics of the parabolic $p$-Laplacian equation. Communications on Pure & Applied Analysis, 2013, 12 (2) : 735-754. doi: 10.3934/cpaa.2013.12.735

[19]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[20]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (3)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]