February  2013, 6(1): 1-16. doi: 10.3934/dcdss.2013.6.1

Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions

1. 

Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60,53115 Bonn, Germany

2. 

Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany

3. 

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States

Received  May 2011 Revised  July 2011 Published  October 2012

Modern theories in crystal plasticity are based on a multiplicative decomposition of the deformation gradient into an elastic and a plastic part. The free energy of the associated variational problems is given by the sum of an elastic and a plastic energy. For a model with one slip system in a three-dimensional setting it is shown that the relaxation of the model with rigid elasticity can be approximated in the sense of $\Gamma$-convergence by models with finite elastic energy and diverging elastic constants.
Citation: Sergio Conti, Georg Dolzmann, Carolin Kreisbeck. Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 1-16. doi: 10.3934/dcdss.2013.6.1
References:
[1]

J. M. Ball and F. Murat, $ W^{1,p}$ quasiconvexity and variational prblems for multiple integrals,, J. Funct. Anal., 58 (1984), 225.  doi: 10.1016/0022-1236(84)90041-7.  Google Scholar

[2]

A. Braides, "$\Gamma$-Convergence for Beginners,", Oxford Lecture Series in Mathematics and its Applications 22. Oxford: Oxford University Press, (2002).   Google Scholar

[3]

C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity,, R. Soc. Lond. Proc. Ser. A, 458 (2002), 299.  doi: 10.1098/rspa.2001.0864.  Google Scholar

[4]

S. Conti, Relaxation of single-slip single-crystal plasticity with linear hardening,, in, (2006), 30.   Google Scholar

[5]

S. Conti, G. Dolzmann and C. Klust, Relaxation of a class of variational models in crystal plasticity,, Proc. R. Soc. Lond. Ser. A, 465 (2009), 1735.  doi: 10.1098/rspa.2008.0390.  Google Scholar

[6]

S. Conti, G. Dolzmann and C. Kreisbeck, Geometrically nonlinear models in crystal plasticity and the limit of rigid elasticity,, PAMM, 10 (2010), 3.  doi: 10.1002/pamm.201010002.  Google Scholar

[7]

S. Conti, G. Dolzmann and C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity,, SIAM J. Math. Analysis, 43 (2011), 2337.  doi: 10.1137/100810320.  Google Scholar

[8]

S. Conti, G. Dolzmann and C. Kreisbeck, Relaxation of a model in finite plasticity with two slip systems,, Submitted (2011)., (2011).   Google Scholar

[9]

S. Conti, G. Dolzmann and S. Müller, The div-curl lemma for sequences whose divergence and curl are compact in $W^{-1,1}$,, C. R. Acad. Sci. Paris, 349 (2011), 175.  doi: 10.1016/j.crma.2010.11.013.  Google Scholar

[10]

S. Conti and F. Theil, Single-slip elastoplastic microstructures,, Arch. Ration. Mech. Anal., 178 (2005), 125.  doi: 10.1007/s00205-005-0371-8.  Google Scholar

[11]

B. Dacorogna, "Direct Methods in the Calculus of Variations,", Applied Mathematical Sciences, (1989).   Google Scholar

[12]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Birkhäuser, (1993).   Google Scholar

[13]

E. De Giorgi, Sulla convergenza di alcune successioni d'integrali del tipo dell'area,, Rend. Mat., IV (1975), 277.   Google Scholar

[14]

E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat., 8 (1975), 842.   Google Scholar

[15]

A. De Simone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of so(3)-invariant energies,, Arch. Ration. Mech. Anal., 161 (2002), 181.  doi: 10.1007/s002050100174.  Google Scholar

[16]

R. V. Kohn, The relaxation of a double-well energy,, Contin. Mech. Thermodyn, 3 (1991), 193.  doi: 10.1007/BF01135336.  Google Scholar

[17]

C. Kreisbeck, "Analytical Aspects of Relaxation for Models in Crystal Plasticity,", PhD thesis, (2010).   Google Scholar

[18]

H. Le Dret and A. Raoult, The quasiconvex envelope of the Saint-Venant-Kirchhoff stored energy function,, Proc. R. Soc. Edinb., 125 (1995), 1179.   Google Scholar

[19]

E. H. Lee, Elastic-plastic deformation at finite strains,, J. Appl. Mech., 36 (1969), 1.  doi: 10.1115/1.3564580.  Google Scholar

[20]

K. Lurie and A. Cherkaev, On a certain variational problem of phase equilibrium,, Material instabilities in continuum mechanics, (1988), 257.   Google Scholar

[21]

S. Müller, Variational models for microstructure and phase transitions., in, (1999), 85.   Google Scholar

[22]

F. Murat, Compacité par compensation,, Ann. Sc. Norm. Super. Pisa, 5 (1978), 489.   Google Scholar

[23]

F. Murat, Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant,, Ann. Sc. Norm. Super. Pisa, 8 (1981), 69.   Google Scholar

[24]

M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals,, J. Mech. Phys. Solids, 47 (1999), 397.  doi: 10.1016/S0022-5096(97)00096-3.  Google Scholar

[25]

A. C. Pipkin, Elastic materials with two preferred states,, Q. J. Mech. Appl. Math., 44 (1991), 1.  doi: 10.1093/qjmam/44.1.1.  Google Scholar

[26]

L. Tartar, Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires,, Journ. d'Anal. non lin., 665 (1978), 228.  doi: 10.1007/BFb0061808.  Google Scholar

[27]

L. Tartar, Compensated compactness and applications to partial differential equations,, Nonlinear Analysis and Mechanics: Heriot-Watt Symp., 39 (1979), 136.   Google Scholar

[28]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland Mathematical Library. Vol. 18. North-Holland Publishing Company, (1978).   Google Scholar

show all references

References:
[1]

J. M. Ball and F. Murat, $ W^{1,p}$ quasiconvexity and variational prblems for multiple integrals,, J. Funct. Anal., 58 (1984), 225.  doi: 10.1016/0022-1236(84)90041-7.  Google Scholar

[2]

A. Braides, "$\Gamma$-Convergence for Beginners,", Oxford Lecture Series in Mathematics and its Applications 22. Oxford: Oxford University Press, (2002).   Google Scholar

[3]

C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity,, R. Soc. Lond. Proc. Ser. A, 458 (2002), 299.  doi: 10.1098/rspa.2001.0864.  Google Scholar

[4]

S. Conti, Relaxation of single-slip single-crystal plasticity with linear hardening,, in, (2006), 30.   Google Scholar

[5]

S. Conti, G. Dolzmann and C. Klust, Relaxation of a class of variational models in crystal plasticity,, Proc. R. Soc. Lond. Ser. A, 465 (2009), 1735.  doi: 10.1098/rspa.2008.0390.  Google Scholar

[6]

S. Conti, G. Dolzmann and C. Kreisbeck, Geometrically nonlinear models in crystal plasticity and the limit of rigid elasticity,, PAMM, 10 (2010), 3.  doi: 10.1002/pamm.201010002.  Google Scholar

[7]

S. Conti, G. Dolzmann and C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity,, SIAM J. Math. Analysis, 43 (2011), 2337.  doi: 10.1137/100810320.  Google Scholar

[8]

S. Conti, G. Dolzmann and C. Kreisbeck, Relaxation of a model in finite plasticity with two slip systems,, Submitted (2011)., (2011).   Google Scholar

[9]

S. Conti, G. Dolzmann and S. Müller, The div-curl lemma for sequences whose divergence and curl are compact in $W^{-1,1}$,, C. R. Acad. Sci. Paris, 349 (2011), 175.  doi: 10.1016/j.crma.2010.11.013.  Google Scholar

[10]

S. Conti and F. Theil, Single-slip elastoplastic microstructures,, Arch. Ration. Mech. Anal., 178 (2005), 125.  doi: 10.1007/s00205-005-0371-8.  Google Scholar

[11]

B. Dacorogna, "Direct Methods in the Calculus of Variations,", Applied Mathematical Sciences, (1989).   Google Scholar

[12]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Birkhäuser, (1993).   Google Scholar

[13]

E. De Giorgi, Sulla convergenza di alcune successioni d'integrali del tipo dell'area,, Rend. Mat., IV (1975), 277.   Google Scholar

[14]

E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat., 8 (1975), 842.   Google Scholar

[15]

A. De Simone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of so(3)-invariant energies,, Arch. Ration. Mech. Anal., 161 (2002), 181.  doi: 10.1007/s002050100174.  Google Scholar

[16]

R. V. Kohn, The relaxation of a double-well energy,, Contin. Mech. Thermodyn, 3 (1991), 193.  doi: 10.1007/BF01135336.  Google Scholar

[17]

C. Kreisbeck, "Analytical Aspects of Relaxation for Models in Crystal Plasticity,", PhD thesis, (2010).   Google Scholar

[18]

H. Le Dret and A. Raoult, The quasiconvex envelope of the Saint-Venant-Kirchhoff stored energy function,, Proc. R. Soc. Edinb., 125 (1995), 1179.   Google Scholar

[19]

E. H. Lee, Elastic-plastic deformation at finite strains,, J. Appl. Mech., 36 (1969), 1.  doi: 10.1115/1.3564580.  Google Scholar

[20]

K. Lurie and A. Cherkaev, On a certain variational problem of phase equilibrium,, Material instabilities in continuum mechanics, (1988), 257.   Google Scholar

[21]

S. Müller, Variational models for microstructure and phase transitions., in, (1999), 85.   Google Scholar

[22]

F. Murat, Compacité par compensation,, Ann. Sc. Norm. Super. Pisa, 5 (1978), 489.   Google Scholar

[23]

F. Murat, Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant,, Ann. Sc. Norm. Super. Pisa, 8 (1981), 69.   Google Scholar

[24]

M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals,, J. Mech. Phys. Solids, 47 (1999), 397.  doi: 10.1016/S0022-5096(97)00096-3.  Google Scholar

[25]

A. C. Pipkin, Elastic materials with two preferred states,, Q. J. Mech. Appl. Math., 44 (1991), 1.  doi: 10.1093/qjmam/44.1.1.  Google Scholar

[26]

L. Tartar, Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires,, Journ. d'Anal. non lin., 665 (1978), 228.  doi: 10.1007/BFb0061808.  Google Scholar

[27]

L. Tartar, Compensated compactness and applications to partial differential equations,, Nonlinear Analysis and Mechanics: Heriot-Watt Symp., 39 (1979), 136.   Google Scholar

[28]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland Mathematical Library. Vol. 18. North-Holland Publishing Company, (1978).   Google Scholar

[1]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[2]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[3]

Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140

[4]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[5]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[6]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[7]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[8]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[9]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[12]

Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288

[13]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[14]

Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020367

[15]

Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29

[16]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[17]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021010

[18]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[19]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[20]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]