-
Previous Article
Young-measure quasi-static damage evolution: The nonconvex and the brittle cases
- DCDS-S Home
- This Issue
-
Next Article
Preface: Rate-independent evolutions
Relaxation and microstructure in a model for finite crystal plasticity with one slip system in three dimensions
1. | Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60,53115 Bonn, Germany |
2. | Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany |
3. | Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, United States |
References:
[1] |
J. M. Ball and F. Murat, $ W^{1,p}$ quasiconvexity and variational prblems for multiple integrals,, J. Funct. Anal., 58 (1984), 225.
doi: 10.1016/0022-1236(84)90041-7. |
[2] |
A. Braides, "$\Gamma$-Convergence for Beginners,", Oxford Lecture Series in Mathematics and its Applications 22. Oxford: Oxford University Press, (2002).
|
[3] |
C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity,, R. Soc. Lond. Proc. Ser. A, 458 (2002), 299.
doi: 10.1098/rspa.2001.0864. |
[4] |
S. Conti, Relaxation of single-slip single-crystal plasticity with linear hardening,, in, (2006), 30. Google Scholar |
[5] |
S. Conti, G. Dolzmann and C. Klust, Relaxation of a class of variational models in crystal plasticity,, Proc. R. Soc. Lond. Ser. A, 465 (2009), 1735.
doi: 10.1098/rspa.2008.0390. |
[6] |
S. Conti, G. Dolzmann and C. Kreisbeck, Geometrically nonlinear models in crystal plasticity and the limit of rigid elasticity,, PAMM, 10 (2010), 3.
doi: 10.1002/pamm.201010002. |
[7] |
S. Conti, G. Dolzmann and C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity,, SIAM J. Math. Analysis, 43 (2011), 2337.
doi: 10.1137/100810320. |
[8] |
S. Conti, G. Dolzmann and C. Kreisbeck, Relaxation of a model in finite plasticity with two slip systems,, Submitted (2011)., (2011). Google Scholar |
[9] |
S. Conti, G. Dolzmann and S. Müller, The div-curl lemma for sequences whose divergence and curl are compact in $W^{-1,1}$,, C. R. Acad. Sci. Paris, 349 (2011), 175.
doi: 10.1016/j.crma.2010.11.013. |
[10] |
S. Conti and F. Theil, Single-slip elastoplastic microstructures,, Arch. Ration. Mech. Anal., 178 (2005), 125.
doi: 10.1007/s00205-005-0371-8. |
[11] |
B. Dacorogna, "Direct Methods in the Calculus of Variations,", Applied Mathematical Sciences, (1989).
|
[12] |
G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Birkhäuser, (1993).
|
[13] |
E. De Giorgi, Sulla convergenza di alcune successioni d'integrali del tipo dell'area,, Rend. Mat., IV (1975), 277. Google Scholar |
[14] |
E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat., 8 (1975), 842.
|
[15] |
A. De Simone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of so(3)-invariant energies,, Arch. Ration. Mech. Anal., 161 (2002), 181.
doi: 10.1007/s002050100174. |
[16] |
R. V. Kohn, The relaxation of a double-well energy,, Contin. Mech. Thermodyn, 3 (1991), 193.
doi: 10.1007/BF01135336. |
[17] |
C. Kreisbeck, "Analytical Aspects of Relaxation for Models in Crystal Plasticity,", PhD thesis, (2010). Google Scholar |
[18] |
H. Le Dret and A. Raoult, The quasiconvex envelope of the Saint-Venant-Kirchhoff stored energy function,, Proc. R. Soc. Edinb., 125 (1995), 1179.
|
[19] |
E. H. Lee, Elastic-plastic deformation at finite strains,, J. Appl. Mech., 36 (1969), 1.
doi: 10.1115/1.3564580. |
[20] |
K. Lurie and A. Cherkaev, On a certain variational problem of phase equilibrium,, Material instabilities in continuum mechanics, (1988), 257.
|
[21] |
S. Müller, Variational models for microstructure and phase transitions., in, (1999), 85.
|
[22] |
F. Murat, Compacité par compensation,, Ann. Sc. Norm. Super. Pisa, 5 (1978), 489.
|
[23] |
F. Murat, Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant,, Ann. Sc. Norm. Super. Pisa, 8 (1981), 69.
|
[24] |
M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals,, J. Mech. Phys. Solids, 47 (1999), 397.
doi: 10.1016/S0022-5096(97)00096-3. |
[25] |
A. C. Pipkin, Elastic materials with two preferred states,, Q. J. Mech. Appl. Math., 44 (1991), 1.
doi: 10.1093/qjmam/44.1.1. |
[26] |
L. Tartar, Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires,, Journ. d'Anal. non lin., 665 (1978), 228.
doi: 10.1007/BFb0061808. |
[27] |
L. Tartar, Compensated compactness and applications to partial differential equations,, Nonlinear Analysis and Mechanics: Heriot-Watt Symp., 39 (1979), 136.
|
[28] |
H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland Mathematical Library. Vol. 18. North-Holland Publishing Company, (1978).
|
show all references
References:
[1] |
J. M. Ball and F. Murat, $ W^{1,p}$ quasiconvexity and variational prblems for multiple integrals,, J. Funct. Anal., 58 (1984), 225.
doi: 10.1016/0022-1236(84)90041-7. |
[2] |
A. Braides, "$\Gamma$-Convergence for Beginners,", Oxford Lecture Series in Mathematics and its Applications 22. Oxford: Oxford University Press, (2002).
|
[3] |
C. Carstensen, K. Hackl and A. Mielke, Non-convex potentials and microstructures in finite-strain plasticity,, R. Soc. Lond. Proc. Ser. A, 458 (2002), 299.
doi: 10.1098/rspa.2001.0864. |
[4] |
S. Conti, Relaxation of single-slip single-crystal plasticity with linear hardening,, in, (2006), 30. Google Scholar |
[5] |
S. Conti, G. Dolzmann and C. Klust, Relaxation of a class of variational models in crystal plasticity,, Proc. R. Soc. Lond. Ser. A, 465 (2009), 1735.
doi: 10.1098/rspa.2008.0390. |
[6] |
S. Conti, G. Dolzmann and C. Kreisbeck, Geometrically nonlinear models in crystal plasticity and the limit of rigid elasticity,, PAMM, 10 (2010), 3.
doi: 10.1002/pamm.201010002. |
[7] |
S. Conti, G. Dolzmann and C. Kreisbeck, Asymptotic behavior of crystal plasticity with one slip system in the limit of rigid elasticity,, SIAM J. Math. Analysis, 43 (2011), 2337.
doi: 10.1137/100810320. |
[8] |
S. Conti, G. Dolzmann and C. Kreisbeck, Relaxation of a model in finite plasticity with two slip systems,, Submitted (2011)., (2011). Google Scholar |
[9] |
S. Conti, G. Dolzmann and S. Müller, The div-curl lemma for sequences whose divergence and curl are compact in $W^{-1,1}$,, C. R. Acad. Sci. Paris, 349 (2011), 175.
doi: 10.1016/j.crma.2010.11.013. |
[10] |
S. Conti and F. Theil, Single-slip elastoplastic microstructures,, Arch. Ration. Mech. Anal., 178 (2005), 125.
doi: 10.1007/s00205-005-0371-8. |
[11] |
B. Dacorogna, "Direct Methods in the Calculus of Variations,", Applied Mathematical Sciences, (1989).
|
[12] |
G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Birkhäuser, (1993).
|
[13] |
E. De Giorgi, Sulla convergenza di alcune successioni d'integrali del tipo dell'area,, Rend. Mat., IV (1975), 277. Google Scholar |
[14] |
E. De Giorgi and T. Franzoni, Su un tipo di convergenza variazionale,, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat., 8 (1975), 842.
|
[15] |
A. De Simone and G. Dolzmann, Macroscopic response of nematic elastomers via relaxation of a class of so(3)-invariant energies,, Arch. Ration. Mech. Anal., 161 (2002), 181.
doi: 10.1007/s002050100174. |
[16] |
R. V. Kohn, The relaxation of a double-well energy,, Contin. Mech. Thermodyn, 3 (1991), 193.
doi: 10.1007/BF01135336. |
[17] |
C. Kreisbeck, "Analytical Aspects of Relaxation for Models in Crystal Plasticity,", PhD thesis, (2010). Google Scholar |
[18] |
H. Le Dret and A. Raoult, The quasiconvex envelope of the Saint-Venant-Kirchhoff stored energy function,, Proc. R. Soc. Edinb., 125 (1995), 1179.
|
[19] |
E. H. Lee, Elastic-plastic deformation at finite strains,, J. Appl. Mech., 36 (1969), 1.
doi: 10.1115/1.3564580. |
[20] |
K. Lurie and A. Cherkaev, On a certain variational problem of phase equilibrium,, Material instabilities in continuum mechanics, (1988), 257.
|
[21] |
S. Müller, Variational models for microstructure and phase transitions., in, (1999), 85.
|
[22] |
F. Murat, Compacité par compensation,, Ann. Sc. Norm. Super. Pisa, 5 (1978), 489.
|
[23] |
F. Murat, Compacité par compensation: condition necessaire et suffisante de continuite faible sous une hypothèse de rang constant,, Ann. Sc. Norm. Super. Pisa, 8 (1981), 69.
|
[24] |
M. Ortiz and E. A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals,, J. Mech. Phys. Solids, 47 (1999), 397.
doi: 10.1016/S0022-5096(97)00096-3. |
[25] |
A. C. Pipkin, Elastic materials with two preferred states,, Q. J. Mech. Appl. Math., 44 (1991), 1.
doi: 10.1093/qjmam/44.1.1. |
[26] |
L. Tartar, Une nouvelle méthode de résolution d'équations aux dérivées partielles non linéaires,, Journ. d'Anal. non lin., 665 (1978), 228.
doi: 10.1007/BFb0061808. |
[27] |
L. Tartar, Compensated compactness and applications to partial differential equations,, Nonlinear Analysis and Mechanics: Heriot-Watt Symp., 39 (1979), 136.
|
[28] |
H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", North-Holland Mathematical Library. Vol. 18. North-Holland Publishing Company, (1978).
|
[1] |
Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455 |
[2] |
Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302 |
[3] |
Yunfeng Geng, Xiaoying Wang, Frithjof Lutscher. Coexistence of competing consumers on a single resource in a hybrid model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 269-297. doi: 10.3934/dcdsb.2020140 |
[4] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[5] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[6] |
Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104 |
[7] |
Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021027 |
[8] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[9] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[10] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[11] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[12] |
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure & Applied Analysis, 2021, 20 (2) : 755-762. doi: 10.3934/cpaa.2020288 |
[13] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[14] |
Philipp Harms. Strong convergence rates for markovian representations of fractional processes. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020367 |
[15] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[16] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[17] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
[18] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[19] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[20] |
Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]