February  2013, 6(1): 131-146. doi: 10.3934/dcdss.2013.6.131

Some remarks on the viscous approximation of crack growth

1. 

Universität Würzburg, Institut für Mathematik, Emil-Fischer-Straße 40, 97074 Würzburg, Germany

2. 

Università degli Studi di Udine, DIMI, Via delle Scienze 206, 33100 Udine, Italy

Received  May 2011 Revised  September 2011 Published  October 2012

We describe an existence result for quasistatic evolutions of cracks in antiplane elasticity obtained in [16] by a vanishing viscosity approach, with free (but regular enough) crack path. We underline in particular the motivations for the choice of the class of admissible cracks and of the dissipation potential. Moreover, we extend the result to a model with applied forces depending on time.
Citation: Giuliano Lazzaroni, Rodica Toader. Some remarks on the viscous approximation of crack growth. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 131-146. doi: 10.3934/dcdss.2013.6.131
References:
[1]

G. Alessandrini, A. Morassi and E. Rosset, Detecting cavities by electrostatic boundary measurements,, Inverse Problems, 18 (2002), 1333.  doi: 10.1088/0266-5611/18/5/308.  Google Scholar

[2]

B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture,, J. Elasticity, 91 (2008), 5.   Google Scholar

[3]

D. Bucur and N. Varchon, A duality approach for the boundary variation of Neumann problems,, SIAM J. Math. Anal., 34 (2002), 460.  doi: 10.1137/S0036141002389579.  Google Scholar

[4]

D. Bucur and J. P. Zolésio, $N$-dimensional shape optimization under capacitary constraint,, J. Differential Equations, 123 (1995), 504.  doi: 10.1006/jdeq.1995.1171.  Google Scholar

[5]

A. Chambolle, A density result in two-dimensional linearized elasticity, and applications,, Arch. Ration. Mech. Anal., 167 (2003), 211.  doi: 10.1007/s00205-002-0240-7.  Google Scholar

[6]

G. Dal Maso, F. Ebobisse and M. Ponsiglione, A stability result for nonlinear Neumann problems under boundary variations,, J. Math. Pures Appl. (9), 82 (2003), 503.   Google Scholar

[7]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results,, Arch. Ration. Mech. Anal., 162 (2002), 101.  doi: 10.1007/s002050100187.  Google Scholar

[8]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization,, Math. Models Methods Appl. Sci., 12 (2002), 1773.  doi: 10.1142/S0218202502002331.  Google Scholar

[9]

P. Destuynder and M. Djaoua, Sur une interprétation mathématique de l'intégrale de Rice en th\'eorie de la rupture fragile,, Math. Methods Appl. Sci., 3 (1981), 70.   Google Scholar

[10]

A. A. Griffith, The phenomena of rupture and flow in solids,, Philos. Trans. Roy. Soc. London Ser. A, 221 (1920), 163.  doi: 10.1098/rsta.1921.0006.  Google Scholar

[11]

P. Grisvard, "Singularities in Boundary Value Problems,'', Research Notes in Applied Mathematics, (1992).   Google Scholar

[12]

D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation,, Math. Models Methods Appl. Sci., 18 (2008), 1529.  doi: 10.1142/S0218202508003121.  Google Scholar

[13]

V. A. Kovtunenko, Shape sensitivity of curvilinear cracks on interface to non-linear perturbations,, Z. Angew. Math. Phys., 54 (2003), 410.  doi: 10.1007/s00033-003-0143-y.  Google Scholar

[14]

C. Larsen, Epsilon-stable quasi-static brittle fracture evolution,, Comm. Pure Appl. Math., 63 (2010), 630.   Google Scholar

[15]

G. Lazzaroni and R. Toader, Energy release rate and stress intensity factor in antiplane elasticity,, J. Math. Pures Appl. (9), 95 (2011), 565.   Google Scholar

[16]

G. Lazzaroni and R. Toader, A model for crack propagation based on viscous approximation,, Math. Models Methods Appl. Sci., 21 (2011), 2019.   Google Scholar

[17]

A. Mielke, Evolution of rate-independent systems,, in, II (2005), 461.   Google Scholar

[18]

A. Mielke, R. Rossi and G. Savaré, $BV$ solutions and viscosity approximations of rate-independent systems,, ESAIM Control Optim. Calc. Var., 18 (2012), 36.  doi: 10.1051/cocv/2010054.  Google Scholar

[19]

U. Mosco, Convergence of convex sets and of solutions of variational inequalities,, Adv. Math., 3 (1969), 510.   Google Scholar

[20]

M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion,, Math. Models Methods Appl. Sci., 18 (2008), 1895.  doi: 10.1142/S0218202508003236.  Google Scholar

[21]

U. Stefanelli, A variational characterization of rate-independent evolution,, Math. Nachr., 282 (2009), 1492.  doi: 10.1002/mana.200810803.  Google Scholar

[22]

V. Šverák, On optimal shape design,, J. Math. Pures Appl. (9), 72 (1993), 537.   Google Scholar

[23]

R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth,, Boll. Unione Mat. Ital., 2 (2009), 1.   Google Scholar

show all references

References:
[1]

G. Alessandrini, A. Morassi and E. Rosset, Detecting cavities by electrostatic boundary measurements,, Inverse Problems, 18 (2002), 1333.  doi: 10.1088/0266-5611/18/5/308.  Google Scholar

[2]

B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture,, J. Elasticity, 91 (2008), 5.   Google Scholar

[3]

D. Bucur and N. Varchon, A duality approach for the boundary variation of Neumann problems,, SIAM J. Math. Anal., 34 (2002), 460.  doi: 10.1137/S0036141002389579.  Google Scholar

[4]

D. Bucur and J. P. Zolésio, $N$-dimensional shape optimization under capacitary constraint,, J. Differential Equations, 123 (1995), 504.  doi: 10.1006/jdeq.1995.1171.  Google Scholar

[5]

A. Chambolle, A density result in two-dimensional linearized elasticity, and applications,, Arch. Ration. Mech. Anal., 167 (2003), 211.  doi: 10.1007/s00205-002-0240-7.  Google Scholar

[6]

G. Dal Maso, F. Ebobisse and M. Ponsiglione, A stability result for nonlinear Neumann problems under boundary variations,, J. Math. Pures Appl. (9), 82 (2003), 503.   Google Scholar

[7]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: existence and approximation results,, Arch. Ration. Mech. Anal., 162 (2002), 101.  doi: 10.1007/s002050100187.  Google Scholar

[8]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization,, Math. Models Methods Appl. Sci., 12 (2002), 1773.  doi: 10.1142/S0218202502002331.  Google Scholar

[9]

P. Destuynder and M. Djaoua, Sur une interprétation mathématique de l'intégrale de Rice en th\'eorie de la rupture fragile,, Math. Methods Appl. Sci., 3 (1981), 70.   Google Scholar

[10]

A. A. Griffith, The phenomena of rupture and flow in solids,, Philos. Trans. Roy. Soc. London Ser. A, 221 (1920), 163.  doi: 10.1098/rsta.1921.0006.  Google Scholar

[11]

P. Grisvard, "Singularities in Boundary Value Problems,'', Research Notes in Applied Mathematics, (1992).   Google Scholar

[12]

D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation,, Math. Models Methods Appl. Sci., 18 (2008), 1529.  doi: 10.1142/S0218202508003121.  Google Scholar

[13]

V. A. Kovtunenko, Shape sensitivity of curvilinear cracks on interface to non-linear perturbations,, Z. Angew. Math. Phys., 54 (2003), 410.  doi: 10.1007/s00033-003-0143-y.  Google Scholar

[14]

C. Larsen, Epsilon-stable quasi-static brittle fracture evolution,, Comm. Pure Appl. Math., 63 (2010), 630.   Google Scholar

[15]

G. Lazzaroni and R. Toader, Energy release rate and stress intensity factor in antiplane elasticity,, J. Math. Pures Appl. (9), 95 (2011), 565.   Google Scholar

[16]

G. Lazzaroni and R. Toader, A model for crack propagation based on viscous approximation,, Math. Models Methods Appl. Sci., 21 (2011), 2019.   Google Scholar

[17]

A. Mielke, Evolution of rate-independent systems,, in, II (2005), 461.   Google Scholar

[18]

A. Mielke, R. Rossi and G. Savaré, $BV$ solutions and viscosity approximations of rate-independent systems,, ESAIM Control Optim. Calc. Var., 18 (2012), 36.  doi: 10.1051/cocv/2010054.  Google Scholar

[19]

U. Mosco, Convergence of convex sets and of solutions of variational inequalities,, Adv. Math., 3 (1969), 510.   Google Scholar

[20]

M. Negri and C. Ortner, Quasi-static crack propagation by Griffith's criterion,, Math. Models Methods Appl. Sci., 18 (2008), 1895.  doi: 10.1142/S0218202508003236.  Google Scholar

[21]

U. Stefanelli, A variational characterization of rate-independent evolution,, Math. Nachr., 282 (2009), 1492.  doi: 10.1002/mana.200810803.  Google Scholar

[22]

V. Šverák, On optimal shape design,, J. Math. Pures Appl. (9), 72 (1993), 537.   Google Scholar

[23]

R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth,, Boll. Unione Mat. Ital., 2 (2009), 1.   Google Scholar

[1]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[2]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[3]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

[4]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[5]

Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124

[6]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[7]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[8]

Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154

[9]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[10]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[11]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[12]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[13]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[14]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[15]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[16]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[17]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[18]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[19]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[20]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]