2013, 6(1): 215-233. doi: 10.3934/dcdss.2013.6.215

Thermalization of rate-independent processes by entropic regularization

1. 

Applied & Computational Mathematics and Graduate Aerospace Laboratories, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125-9400, United States

2. 

School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088, United States

3. 

Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom

4. 

Graduate Aerospace Laboratories, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, United States

Received  May 2011 Revised  July 2011 Published  October 2012

We consider the effective behaviour of a rate-independent process when it is placed in contact with a heat bath. The method used to ``thermalize'' the process is an interior-point entropic regularization of the Moreau--Yosida incremental formulation of the unperturbed process. It is shown that the heat bath destroys the rate independence in a controlled and deterministic way, and that the effective dynamics are those of a non-linear gradient descent in the original energetic potential with respect to a different and non-trivial effective dissipation potential.
Citation: T. J. Sullivan, M. Koslowski, F. Theil, Michael Ortiz. Thermalization of rate-independent processes by entropic regularization. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 215-233. doi: 10.3934/dcdss.2013.6.215
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Lectures in Mathematics ETH Zürich, (2008).

[2]

S. Boyd and L. Vandenberghe, "Convex Optimization,", Cambridge University Press, (2004).

[3]

R. Jordan and D. Kinderlehrer, An extended variational principle,, Partial Differential Equations and Applications, 177 (1996), 187.

[4]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1.

[5]

M. Koslowski, "A Phase-Field Model of Dislocations in Ductile Single Crystals,", Ph. D. thesis, (2003).

[6]

A. Mielke, Evolution of rate-independent systems,, Evolutionary Equations. Handb. Differ. Equ., II (2005), 461.

[7]

\bysame, Modeling and analysis of rate-independent processes,, January 2007, (2007).

[8]

A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces,, Discrete Contin. Dyn. Syst., 25 (2009), 585.

[9]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151.

[10]

J. J. Moreau, Proximité et dualité dans un espace hilbertien,, Bull. Soc. Math. France, 93 (1965), 273.

[11]

J. P. Penot and M. Théra, Semicontinuous mappings in general topology,, Arch. Math. (Basel), 38 (1982), 158.

[12]

D. Preiss, Geometry of measures in $\mathbbR^n$distribution, rectifiability, and densities: ,, Ann. of Math., 125 (1987), 537.

[13]

T. J. Sullivan, "Analysis of Gradient Descents in Random Energies and Heat Baths,", Ph. D. thesis, (2009).

[14]

T. J. Sullivan, M. Koslowski, F. Theil and M. Ortiz, On the behavior of dissipative systems in contact with a heat bath: application to Andrade creep,, J. Mech. Phys. Solids, 57 (2009), 1058.

[15]

K. Yosida, "Functional Analysis,", Die Grundlehren der Mathematischen Wissenschaften, (1965).

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Space of Probability Measures,", Lectures in Mathematics ETH Zürich, (2008).

[2]

S. Boyd and L. Vandenberghe, "Convex Optimization,", Cambridge University Press, (2004).

[3]

R. Jordan and D. Kinderlehrer, An extended variational principle,, Partial Differential Equations and Applications, 177 (1996), 187.

[4]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1.

[5]

M. Koslowski, "A Phase-Field Model of Dislocations in Ductile Single Crystals,", Ph. D. thesis, (2003).

[6]

A. Mielke, Evolution of rate-independent systems,, Evolutionary Equations. Handb. Differ. Equ., II (2005), 461.

[7]

\bysame, Modeling and analysis of rate-independent processes,, January 2007, (2007).

[8]

A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces,, Discrete Contin. Dyn. Syst., 25 (2009), 585.

[9]

A. Mielke and F. Theil, On rate-independent hysteresis models,, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151.

[10]

J. J. Moreau, Proximité et dualité dans un espace hilbertien,, Bull. Soc. Math. France, 93 (1965), 273.

[11]

J. P. Penot and M. Théra, Semicontinuous mappings in general topology,, Arch. Math. (Basel), 38 (1982), 158.

[12]

D. Preiss, Geometry of measures in $\mathbbR^n$distribution, rectifiability, and densities: ,, Ann. of Math., 125 (1987), 537.

[13]

T. J. Sullivan, "Analysis of Gradient Descents in Random Energies and Heat Baths,", Ph. D. thesis, (2009).

[14]

T. J. Sullivan, M. Koslowski, F. Theil and M. Ortiz, On the behavior of dissipative systems in contact with a heat bath: application to Andrade creep,, J. Mech. Phys. Solids, 57 (2009), 1058.

[15]

K. Yosida, "Functional Analysis,", Die Grundlehren der Mathematischen Wissenschaften, (1965).

[1]

G. A. Athanassoulis, K. A. Belibassakis. New evolution equations for non-linear water waves in general bathymetry with application to steady travelling solutions in constant, but arbitrary, depth. Conference Publications, 2007, 2007 (Special) : 75-84. doi: 10.3934/proc.2007.2007.75

[2]

Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004

[3]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[4]

Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691

[5]

Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

[6]

Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1/2) : 165-182. doi: 10.3934/dcds.2008.22.165

[7]

Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33.

[8]

Armin Lechleiter. Explicit characterization of the support of non-linear inclusions. Inverse Problems & Imaging, 2011, 5 (3) : 675-694. doi: 10.3934/ipi.2011.5.675

[9]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1/2) : 435-454. doi: 10.3934/dcds.2009.23.435

[10]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[11]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : ⅰ-ⅳ. doi: 10.3934/dcdss.201702i

[12]

Rajesh Kumar, Jitendra Kumar, Gerald Warnecke. Convergence analysis of a finite volume scheme for solving non-linear aggregation-breakage population balance equations. Kinetic & Related Models, 2014, 7 (4) : 713-737. doi: 10.3934/krm.2014.7.713

[13]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[14]

Sanjay Khattri. Another note on some quadrature based three-step iterative methods for non-linear equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 549-555. doi: 10.3934/naco.2013.3.549

[15]

Michela Procesi. Quasi-periodic solutions for completely resonant non-linear wave equations in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 541-552. doi: 10.3934/dcds.2005.13.541

[16]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[17]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations & Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193

[18]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[19]

T. Gilbert, J. R. Dorfman. On the parametric dependences of a class of non-linear singular maps. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 391-406. doi: 10.3934/dcdsb.2004.4.391

[20]

José M. Amigó, Isabelle Catto, Ángel Giménez, José Valero. Attractors for a non-linear parabolic equation modelling suspension flows. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 205-231. doi: 10.3934/dcdsb.2009.11.205

2016 Impact Factor: 0.781

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

[Back to Top]