2012, 7(3): 385-397. doi: 10.3934/nhm.2012.7.385

Modeling international crisis synchronization in the world trade web

1. 

Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Països Catalans 26, 43007 Tarragona, Spain, Spain, Spain

2. 

Departament de Física Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

Received  December 2011 Revised  June 2012 Published  October 2012

Trade is a fundamental pillar of economy and a form of social organization. Its empirical characterization at the worldwide scale is represented by the World Trade Web (WTW), the network built upon the trade relationships between the different countries. Several scientific studies have focused on the structural characterization of this network, as well as its dynamical properties, since we have registry of the structure of the network at different times in history. In this paper we study an abstract scenario for the development of global crises on top of the structure of connections of the WTW. Assuming a cyclic dynamics of national economies and the interaction of different countries according to the import-export balances, we are able to investigate, using a simple model of pulse-coupled oscillators, the synchronization phenomenon of crises at the worldwide scale. We focus on the level of synchronization measured by an order parameter at two different scales, one for the global system and another one for the mesoscales defined through the topology. We use the WTW network structure to simulate a network of Integrate-and-Fire oscillators for six different snapshots between years 1950 and 2000. The results reinforce the idea that globalization accelerates the global synchronization process, and the analysis at a mesoscopic level shows that this synchronization is different before and after globalization periods: after globalization, the effect of communities is almost inexistent.
Citation: Pau Erola, Albert Díaz-Guilera, Sergio Gómez, Alex Arenas. Modeling international crisis synchronization in the world trade web. Networks & Heterogeneous Media, 2012, 7 (3) : 385-397. doi: 10.3934/nhm.2012.7.385
References:
[1]

A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks,, Phys. Rep., 469 (2008), 93. doi: 10.1016/j.physrep.2008.09.002.

[2]

A. Arenas, J. Duch, A. Fernández and S. Gómez, Size reduction of complex networks preserving modularity,, New J. Phys., 9 (2007), 1.

[3]

A. Arenas, A. Fernández and S. Gómez, Analysis of the structure of complex networks at different resolution levels,, New J. Phys., 10 (2008). doi: 10.1088/1367-2630/10/5/053039.

[4]

E. T. Bell, Exponential numbers,, Am. Math. Mon., 41 (1934), 411. doi: 10.2307/2300300.

[5]

U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski and D. Wagner, On modularity clustering,, IEEE T. Knowl. Data En., 20 (2008), 172. doi: 10.1109/TKDE.2007.190689.

[6]

S. R. Campbell, D. L. L. Wang and C. Jayaprakash, Synchrony and desynchrony in integrate-and-fire oscillators,, Neural Comput., 11 (1999), 1595. doi: 10.1162/089976699300016160.

[7]

A. Clauset, M. E. J. Newman and C. Moore, Finding community structure in very large networks,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.066111.

[8]

A. V. Deardorff, "Terms of Trade: Glossary of International Economics,'', World Scientific, (2006).

[9]

J. Duch and A. Arenas, Community identification using extremal optimization,, Phys. Rev. E, 72 (2005). doi: 10.1103/PhysRevE.72.027104.

[10]

G. Fagiolo, J. Reyes and S. Schiavo, World-trade web: Topological properties, dynamics, and evolution,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.036115.

[11]

D. Garlaschelli, T. Di Matteo, T. Aste, G. Caldarelli and M. I. Loffredo, Interplay between topology and dynamics in the World Trade Web,, Eur. Phys. J. B, 57 (2007), 159. doi: 10.1140/epjb/e2007-00131-6.

[12]

R. Guimerà and L. A. N. Amaral, Cartography of complex networks: modules and universal roles,, J. Stat. Mech., (2005).

[13]

K. S. Gleditsch, Expanded Trade and GDP data,, J. Conflict Resolut., 46 (2002), 712. doi: 10.1177/002200202236171.

[14]

J. He and M. W. Deem, Structure and response in the World Trade Network,, Phys. Rev. Lett., 105 (2010). doi: 10.1103/PhysRevLett.105.198701.

[15]

M. A. Kose, C. Otrok and E. S. Prasad, Global business cycles: Convergence or decoupling?,, Nat. Bureau of Economic Research, 14292 (2008).

[16]

H. P. Minsky, "Stabilizing an Unstable Economy,'', Yale University Press, (1986).

[17]

H. P. Minsky, The financial instability hypothesis,, The Jerome Levy Economics Institute, 74 (1992).

[18]

R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators,, SIAM J. Appl. Math., 50 (1990), 1645. doi: 10.1137/0150098.

[19]

M. E. J. Newman, Analysis of weighted networks,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.056131.

[20]

M. E. J. Newman, Fast algorithm for detecting community structure in networks,, Phys. Rev. E, 69 (2004). doi: 10.1103/PhysRevE.69.066133.

[21]

M. E. J. Newman, Modularity and community structure in networks,, P. Natl. Acad. Sci. USA, 103 (2006), 8577. doi: 10.1073/pnas.0601602103.

[22]

X. Li, Y. Y. Jin and G. Chen, Complexity and synchronization of the world trade web,, Physica A, 328 (2003), 287. doi: 10.1016/S0378-4371(03)00567-3.

[23]

J. M. Pujol, J. Béjar and J. Delgado, Clustering algorithm for determining community structure in large networks,, Phys. Rev. E, 74 (2006). doi: 10.1103/PhysRevE.74.016107.

[24]

A. Rothkegel and K. Lehnertz, Recurrent events of synchrony in complex networks of pulse-coupled oscillators,, Europhys. Lett., 95 (2011). doi: 10.1209/0295-5075/95/38001.

[25]

M. A. Serrano and M. Boguñá, Topology of the world trade web,, Phys. Rev. E, 68 (2003). doi: 10.1103/PhysRevE.68.015101.

[26]

T. Squartini, G. Fagiolo and D. Garlaschelli, Randomizing world trade. I. A binary network analysis,, Phys. Rev. E, 84 (2011). doi: 10.1103/PhysRevE.84.046118.

[27]

M. Timme, F. Wolf and T. Geisel, Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators,, Phys. Rev. Lett, 89 (2002). doi: 10.1103/PhysRevLett.89.258701.

show all references

References:
[1]

A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks,, Phys. Rep., 469 (2008), 93. doi: 10.1016/j.physrep.2008.09.002.

[2]

A. Arenas, J. Duch, A. Fernández and S. Gómez, Size reduction of complex networks preserving modularity,, New J. Phys., 9 (2007), 1.

[3]

A. Arenas, A. Fernández and S. Gómez, Analysis of the structure of complex networks at different resolution levels,, New J. Phys., 10 (2008). doi: 10.1088/1367-2630/10/5/053039.

[4]

E. T. Bell, Exponential numbers,, Am. Math. Mon., 41 (1934), 411. doi: 10.2307/2300300.

[5]

U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski and D. Wagner, On modularity clustering,, IEEE T. Knowl. Data En., 20 (2008), 172. doi: 10.1109/TKDE.2007.190689.

[6]

S. R. Campbell, D. L. L. Wang and C. Jayaprakash, Synchrony and desynchrony in integrate-and-fire oscillators,, Neural Comput., 11 (1999), 1595. doi: 10.1162/089976699300016160.

[7]

A. Clauset, M. E. J. Newman and C. Moore, Finding community structure in very large networks,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.066111.

[8]

A. V. Deardorff, "Terms of Trade: Glossary of International Economics,'', World Scientific, (2006).

[9]

J. Duch and A. Arenas, Community identification using extremal optimization,, Phys. Rev. E, 72 (2005). doi: 10.1103/PhysRevE.72.027104.

[10]

G. Fagiolo, J. Reyes and S. Schiavo, World-trade web: Topological properties, dynamics, and evolution,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.036115.

[11]

D. Garlaschelli, T. Di Matteo, T. Aste, G. Caldarelli and M. I. Loffredo, Interplay between topology and dynamics in the World Trade Web,, Eur. Phys. J. B, 57 (2007), 159. doi: 10.1140/epjb/e2007-00131-6.

[12]

R. Guimerà and L. A. N. Amaral, Cartography of complex networks: modules and universal roles,, J. Stat. Mech., (2005).

[13]

K. S. Gleditsch, Expanded Trade and GDP data,, J. Conflict Resolut., 46 (2002), 712. doi: 10.1177/002200202236171.

[14]

J. He and M. W. Deem, Structure and response in the World Trade Network,, Phys. Rev. Lett., 105 (2010). doi: 10.1103/PhysRevLett.105.198701.

[15]

M. A. Kose, C. Otrok and E. S. Prasad, Global business cycles: Convergence or decoupling?,, Nat. Bureau of Economic Research, 14292 (2008).

[16]

H. P. Minsky, "Stabilizing an Unstable Economy,'', Yale University Press, (1986).

[17]

H. P. Minsky, The financial instability hypothesis,, The Jerome Levy Economics Institute, 74 (1992).

[18]

R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators,, SIAM J. Appl. Math., 50 (1990), 1645. doi: 10.1137/0150098.

[19]

M. E. J. Newman, Analysis of weighted networks,, Phys. Rev. E, 70 (2004). doi: 10.1103/PhysRevE.70.056131.

[20]

M. E. J. Newman, Fast algorithm for detecting community structure in networks,, Phys. Rev. E, 69 (2004). doi: 10.1103/PhysRevE.69.066133.

[21]

M. E. J. Newman, Modularity and community structure in networks,, P. Natl. Acad. Sci. USA, 103 (2006), 8577. doi: 10.1073/pnas.0601602103.

[22]

X. Li, Y. Y. Jin and G. Chen, Complexity and synchronization of the world trade web,, Physica A, 328 (2003), 287. doi: 10.1016/S0378-4371(03)00567-3.

[23]

J. M. Pujol, J. Béjar and J. Delgado, Clustering algorithm for determining community structure in large networks,, Phys. Rev. E, 74 (2006). doi: 10.1103/PhysRevE.74.016107.

[24]

A. Rothkegel and K. Lehnertz, Recurrent events of synchrony in complex networks of pulse-coupled oscillators,, Europhys. Lett., 95 (2011). doi: 10.1209/0295-5075/95/38001.

[25]

M. A. Serrano and M. Boguñá, Topology of the world trade web,, Phys. Rev. E, 68 (2003). doi: 10.1103/PhysRevE.68.015101.

[26]

T. Squartini, G. Fagiolo and D. Garlaschelli, Randomizing world trade. I. A binary network analysis,, Phys. Rev. E, 84 (2011). doi: 10.1103/PhysRevE.84.046118.

[27]

M. Timme, F. Wolf and T. Geisel, Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators,, Phys. Rev. Lett, 89 (2002). doi: 10.1103/PhysRevLett.89.258701.

[1]

Michele Barbi, Angelo Di Garbo, Rita Balocchi. Improved integrate-and-fire model for RSA. Mathematical Biosciences & Engineering, 2007, 4 (4) : 609-615. doi: 10.3934/mbe.2007.4.609

[2]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences & Engineering, 2016, 13 (3) : 483-493. doi: 10.3934/mbe.2016002

[3]

Timothy J. Lewis. Phase-locking in electrically coupled non-leaky integrate-and-fire neurons. Conference Publications, 2003, 2003 (Special) : 554-562. doi: 10.3934/proc.2003.2003.554

[4]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (1) : 1-10. doi: 10.3934/mbe.2014.11.1

[5]

Benoît Perthame, Delphine Salort. On a voltage-conductance kinetic system for integrate & fire neural networks. Kinetic & Related Models, 2013, 6 (4) : 841-864. doi: 10.3934/krm.2013.6.841

[6]

Maximiliano Fernandez, Javier Galeano, Cesar Hidalgo. Bipartite networks provide new insights on international trade markets. Networks & Heterogeneous Media, 2012, 7 (3) : 399-413. doi: 10.3934/nhm.2012.7.399

[7]

Rafael Diaz, Laura Gomez. Indirect influences in international trade. Networks & Heterogeneous Media, 2015, 10 (1) : 149-165. doi: 10.3934/nhm.2015.10.149

[8]

Xiwei Liu, Tianping Chen, Wenlian Lu. Cluster synchronization for linearly coupled complex networks. Journal of Industrial & Management Optimization, 2011, 7 (1) : 87-101. doi: 10.3934/jimo.2011.7.87

[9]

Jin-Liang Wang, Zhi-Chun Yang, Tingwen Huang, Mingqing Xiao. Local and global exponential synchronization of complex delayed dynamical networks with general topology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 393-408. doi: 10.3934/dcdsb.2011.16.393

[10]

Filipe Martins, Alberto A. Pinto, Jorge Passamani Zubelli. Nash and social welfare impact in an international trade model. Journal of Dynamics & Games, 2017, 4 (2) : 149-173. doi: 10.3934/jdg.2017009

[11]

Roberta Sirovich, Luisa Testa. A new firing paradigm for integrate and fire stochastic neuronal models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 597-611. doi: 10.3934/mbe.2016010

[12]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks & Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[13]

Inmaculada Leyva, Irene Sendiña-Nadal, Stefano Boccaletti. Explosive synchronization in mono and multilayer networks. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 1931-1944. doi: 10.3934/dcdsb.2018189

[14]

Daniel M. N. Maia, Elbert E. N. Macau, Tiago Pereira, Serhiy Yanchuk. Synchronization in networks with strongly delayed couplings. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3461-3482. doi: 10.3934/dcdsb.2018234

[15]

Joseph D. Skufca, Erik M. Bollt. Communication and Synchronization in Disconnected Networks with Dynamic Topology: Moving Neighborhood Networks. Mathematical Biosciences & Engineering, 2004, 1 (2) : 347-359. doi: 10.3934/mbe.2004.1.347

[16]

Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295

[17]

Tingting Su, Xinsong Yang. Finite-time synchronization of competitive neural networks with mixed delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3655-3667. doi: 10.3934/dcdsb.2016115

[18]

Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

[19]

Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks & Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441

[20]

F. S. Vannucchi, S. Boccaletti. Chaotic spreading of epidemics in complex networks of excitable units. Mathematical Biosciences & Engineering, 2004, 1 (1) : 49-55. doi: 10.3934/mbe.2004.1.49

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (2)

[Back to Top]