April  2013, 6(2): 439-460. doi: 10.3934/dcdss.2013.6.439

Well-posedness of an extended model for water-ice phase transitions

1. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1

2. 

WIAS Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany, Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano

Received  July 2011 Revised  December 2011 Published  November 2012

We propose an improved model explaining the occurrence of high stresses due to the difference in specific volumes during phase transitions between water and ice. The unknowns of the resulting evolution problem are the absolute temperature, the volume increment, and the liquid fraction. The main novelty here consists in including the dependence of the specific heat and of the speed of sound upon the phase. These additional nonlinearities bring new mathematical difficulties which require new estimation techniques based on Moser iteration. We establish the existence of a global solution to the corresponding initial-boundary value problem, as well as lower and upper bounds for the absolute temperature. Assuming constant heat conductivity, we also prove uniqueness and continuous data dependence of the solution.
Citation: Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439
References:
[1]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,, Czechoslovak Math. J. \textbf{44(119)} (1994), 44(119) (1994), 109.   Google Scholar

[2]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci. 121, (1996).   Google Scholar

[3]

P. Colli, M. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys,, Quart. Appl. Math., 48 (1990), 31.   Google Scholar

[4]

P. Colli, P. Krejčí, E. Rocca and J. Sprekels, A nonlocal quasilinear multi-phase system with nonconstant specific heat and heat conductivity,, J. Differ. Equations, 251 (2011), 1354.   Google Scholar

[5]

M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag Berlin, (2002).   Google Scholar

[6]

M. Frémond and E. Rocca, Well-posedness of a phase transition model with the possibility of voids,, Math. Models Methods Appl. Sci., 16 (2006), 559.  doi: 10.1142/S0218202506001261.  Google Scholar

[7]

M. Frémond and E. Rocca, Solid liquid phase changes with different densities,, Q. Appl. Math., 66 (2008), 609.   Google Scholar

[8]

V. Girault and P.-A. Raviart, "Finite Element Methods for Navier-Stokes Equations,", Springer-Verlag, (1986).   Google Scholar

[9]

G. Joos, "Lehrbuch der Theoretischen Physik," Akademische Verlagsgesellschaft,, Leipzig 1939 (In German)., (1939).   Google Scholar

[10]

P. Krejčí, E. Rocca and J. Sprekels, A bottle in a freezer,, SIAM J. Math. Anal., 41 (2009), 1851.  doi: 10.1137/09075086X.  Google Scholar

[11]

P. Krejčí, E. Rocca and J. Sprekels, Phase separation in a gravity field,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 391.  doi: 10.3934/dcdss.2011.4.391.  Google Scholar

[12]

P. Krejčí, E. Rocca and J. Sprekels, Liquid-solid phase transitions in a deformable container,, Contribution to the book, (2010), 285.   Google Scholar

[13]

E. Madelung, "Die mathematischen Hilfsmittel des Physikers,", Sixth Edition, (1957).   Google Scholar

[14]

A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and their Applications 28, (1996).   Google Scholar

show all references

References:
[1]

C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,, Czechoslovak Math. J. \textbf{44(119)} (1994), 44(119) (1994), 109.   Google Scholar

[2]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci. 121, (1996).   Google Scholar

[3]

P. Colli, M. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys,, Quart. Appl. Math., 48 (1990), 31.   Google Scholar

[4]

P. Colli, P. Krejčí, E. Rocca and J. Sprekels, A nonlocal quasilinear multi-phase system with nonconstant specific heat and heat conductivity,, J. Differ. Equations, 251 (2011), 1354.   Google Scholar

[5]

M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag Berlin, (2002).   Google Scholar

[6]

M. Frémond and E. Rocca, Well-posedness of a phase transition model with the possibility of voids,, Math. Models Methods Appl. Sci., 16 (2006), 559.  doi: 10.1142/S0218202506001261.  Google Scholar

[7]

M. Frémond and E. Rocca, Solid liquid phase changes with different densities,, Q. Appl. Math., 66 (2008), 609.   Google Scholar

[8]

V. Girault and P.-A. Raviart, "Finite Element Methods for Navier-Stokes Equations,", Springer-Verlag, (1986).   Google Scholar

[9]

G. Joos, "Lehrbuch der Theoretischen Physik," Akademische Verlagsgesellschaft,, Leipzig 1939 (In German)., (1939).   Google Scholar

[10]

P. Krejčí, E. Rocca and J. Sprekels, A bottle in a freezer,, SIAM J. Math. Anal., 41 (2009), 1851.  doi: 10.1137/09075086X.  Google Scholar

[11]

P. Krejčí, E. Rocca and J. Sprekels, Phase separation in a gravity field,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 391.  doi: 10.3934/dcdss.2011.4.391.  Google Scholar

[12]

P. Krejčí, E. Rocca and J. Sprekels, Liquid-solid phase transitions in a deformable container,, Contribution to the book, (2010), 285.   Google Scholar

[13]

E. Madelung, "Die mathematischen Hilfsmittel des Physikers,", Sixth Edition, (1957).   Google Scholar

[14]

A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and their Applications 28, (1996).   Google Scholar

[1]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[2]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[3]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[4]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[5]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[6]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[7]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[10]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[11]

Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035

[12]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[15]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[16]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[17]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[18]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[19]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[20]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]