-
Previous Article
Equilibrium and stability of tensegrity structures: A convex analysis approach
- DCDS-S Home
- This Issue
-
Next Article
Parabolic quasi-variational diffusion problems with gradient constraints
Well-posedness of an extended model for water-ice phase transitions
1. | Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1 |
2. | WIAS Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany, Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano |
References:
[1] |
C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,, Czechoslovak Math. J. \textbf{44(119)} (1994), 44(119) (1994), 109.
|
[2] |
M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci. 121, (1996).
|
[3] |
P. Colli, M. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys,, Quart. Appl. Math., 48 (1990), 31.
|
[4] |
P. Colli, P. Krejčí, E. Rocca and J. Sprekels, A nonlocal quasilinear multi-phase system with nonconstant specific heat and heat conductivity,, J. Differ. Equations, 251 (2011), 1354.
|
[5] |
M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag Berlin, (2002).
|
[6] |
M. Frémond and E. Rocca, Well-posedness of a phase transition model with the possibility of voids,, Math. Models Methods Appl. Sci., 16 (2006), 559.
doi: 10.1142/S0218202506001261. |
[7] |
M. Frémond and E. Rocca, Solid liquid phase changes with different densities,, Q. Appl. Math., 66 (2008), 609.
|
[8] |
V. Girault and P.-A. Raviart, "Finite Element Methods for Navier-Stokes Equations,", Springer-Verlag, (1986).
|
[9] |
G. Joos, "Lehrbuch der Theoretischen Physik," Akademische Verlagsgesellschaft,, Leipzig 1939 (In German)., (1939). Google Scholar |
[10] |
P. Krejčí, E. Rocca and J. Sprekels, A bottle in a freezer,, SIAM J. Math. Anal., 41 (2009), 1851.
doi: 10.1137/09075086X. |
[11] |
P. Krejčí, E. Rocca and J. Sprekels, Phase separation in a gravity field,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 391.
doi: 10.3934/dcdss.2011.4.391. |
[12] |
P. Krejčí, E. Rocca and J. Sprekels, Liquid-solid phase transitions in a deformable container,, Contribution to the book, (2010), 285. Google Scholar |
[13] |
E. Madelung, "Die mathematischen Hilfsmittel des Physikers,", Sixth Edition, (1957).
|
[14] |
A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and their Applications 28, (1996).
|
show all references
References:
[1] |
C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,, Czechoslovak Math. J. \textbf{44(119)} (1994), 44(119) (1994), 109.
|
[2] |
M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci. 121, (1996).
|
[3] |
P. Colli, M. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys,, Quart. Appl. Math., 48 (1990), 31.
|
[4] |
P. Colli, P. Krejčí, E. Rocca and J. Sprekels, A nonlocal quasilinear multi-phase system with nonconstant specific heat and heat conductivity,, J. Differ. Equations, 251 (2011), 1354.
|
[5] |
M. Frémond, "Non-Smooth Thermomechanics,", Springer-Verlag Berlin, (2002).
|
[6] |
M. Frémond and E. Rocca, Well-posedness of a phase transition model with the possibility of voids,, Math. Models Methods Appl. Sci., 16 (2006), 559.
doi: 10.1142/S0218202506001261. |
[7] |
M. Frémond and E. Rocca, Solid liquid phase changes with different densities,, Q. Appl. Math., 66 (2008), 609.
|
[8] |
V. Girault and P.-A. Raviart, "Finite Element Methods for Navier-Stokes Equations,", Springer-Verlag, (1986).
|
[9] |
G. Joos, "Lehrbuch der Theoretischen Physik," Akademische Verlagsgesellschaft,, Leipzig 1939 (In German)., (1939). Google Scholar |
[10] |
P. Krejčí, E. Rocca and J. Sprekels, A bottle in a freezer,, SIAM J. Math. Anal., 41 (2009), 1851.
doi: 10.1137/09075086X. |
[11] |
P. Krejčí, E. Rocca and J. Sprekels, Phase separation in a gravity field,, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 391.
doi: 10.3934/dcdss.2011.4.391. |
[12] |
P. Krejčí, E. Rocca and J. Sprekels, Liquid-solid phase transitions in a deformable container,, Contribution to the book, (2010), 285. Google Scholar |
[13] |
E. Madelung, "Die mathematischen Hilfsmittel des Physikers,", Sixth Edition, (1957).
|
[14] |
A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and their Applications 28, (1996).
|
[1] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[2] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[3] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020385 |
[4] |
Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020 doi: 10.3934/fods.2020018 |
[5] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[6] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
[7] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[8] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[9] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[10] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[11] |
Xueli Bai, Fang Li. Global dynamics of competition models with nonsymmetric nonlocal dispersals when one diffusion rate is small. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3075-3092. doi: 10.3934/dcds.2020035 |
[12] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[13] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[14] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
[15] |
Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287 |
[16] |
Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021002 |
[17] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[18] |
Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 |
[19] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[20] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]