2012, 5(4): 817-842. doi: 10.3934/krm.2012.5.817

From individual to collective behaviour of coupled velocity jump processes: A locust example

1. 

University of Oxford, Mathematical Institute, 24-29 St Giles', Oxford, OX1 3LB

2. 

King Abdullah University of Science and Technology, Computer, Electrical and Mathematical Sciences and Engineering, Thuwal 23955-6900, Saudi Arabia

Received  September 2011 Revised  August 2012 Published  November 2012

A class of stochastic individual-based models, written in terms of coupled velocity jump processes, is presented and analysed. This modelling approach incorporates recent experimental findings on the behaviour of locusts. It exhibits nontrivial dynamics with a pitchfork bifurcation and recovers the observed group directional switching. Estimates of the expected switching times, in terms of the number of individuals and values of the model coefficients, are obtained using the corresponding Fokker-Planck equation. In the limit of large populations, a system of two kinetic equations (with nonlocal and nonlinear right hand side) is derived and analyzed. The existence of its solutions is proven and the system's long-time behaviour is investigated. Finally, a first step towards the mean field limit of topological interactions is made by studying the effect of shrinking the interaction radius in the individual-based model.
Citation: Radek Erban, Jan Haskovec. From individual to collective behaviour of coupled velocity jump processes: A locust example. Kinetic & Related Models, 2012, 5 (4) : 817-842. doi: 10.3934/krm.2012.5.817
References:
[1]

L. Baum and M. Katz, Convergence rates in the law of large numbers,, Transactions of the American Mathematical Society, 120 (1965), 108. doi: 10.1090/S0002-9947-1965-0198524-1.

[2]

S. Bazazi, J. Buhl, J. Hale, M. Anstey, G. Sword, S. Simpson and I. Couzin, Collective motion and cannibalism in locust migratory bands,, Current Biology, 18 (2008), 735. doi: 10.1016/j.cub.2008.04.035.

[3]

J. Buhl, D. Sumpter, I. Couzin, J. Hale, E. Despland, E. Miller and S. Simpson, From disorder to order in marching locusts,, Science, 312 (2006), 1402. doi: 10.1126/science.1125142.

[4]

J. Buhl, G. Sword, F. Clissold and S. Simpson, Group structure in locust migratory bands,, Behav. Ecol. Sociobiol., 65 (2011), 265. doi: 10.1007/s00265-010-1041-x.

[5]

J. Carrillo, M. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory,, Kinetic and Related Models, 2 (2009), 363.

[6]

J. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM Journal on Mathematical Analysis, 42 (2010), 218. doi: 10.1137/090757290.

[7]

J. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, hydrodynamic models of swarming,, in, (2010), 297.

[8]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,'', Applied Mathematical Sciences, 106 (1994).

[9]

E. Codling and N. Hill, Calculating spatial statistics for velocity jump processes with experimentally observed reorientation parameters,, Journal of Mathematical Biology, 51 (2005), 527. doi: 10.1007/s00285-005-0317-7.

[10]

A. Czirók, A. Barabási and T. Vicsek, Collective motion of self-propelled particles: Kinetic phase transition in one dimension,, Physical Review Letters, 82 (1999), 209. doi: 10.1103/PhysRevLett.82.209.

[11]

R. Erban, I. Kevrekidis, D. Adalsteinsson and T. Elston, Gene regulatory networks: A coarse-grained, equation-free approach to multiscale computation,, Journal of Chemical Physics, 124 (2006).

[12]

R. Erban and H. Othmer, From individual to collective behaviour in bacterial chemotaxis,, SIAM Journal on Applied Mathematics, 65 (2004), 361. doi: 10.1137/S0036139903433232.

[13]

R. Erban and H. Othmer, From signal transduction to spatial pattern formation in E. coli: A paradigm for multi-scale modeling in biology>,, Multiscale Modeling and Simulation, 3 (2005), 362.

[14]

C. Escudero, C. Yates, J. Buhl, I. Couzin, R. Erban, I. Kevrekidis and P. Maini, Ergodic directional switching in mobile insect groups,, Physical Review E, 82 (2010).

[15]

L. Evans, "Partial Differential Equations,'', American Mathematical Society, (1998).

[16]

W. Feller, "An Introduction to Probability Theory and its Applications,'', $3^{rd}$ edition, (1967).

[17]

M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via the povzner-boltzmann equation,, Physica D: Nonlinear Phenomena, 240 (2011), 21. doi: 10.1016/j.physd.2010.08.003.

[18]

D. Gillespie, "Markov Processes, An Introduction for Physical Scientists,'', Academic Press, (1992).

[19]

S. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinetic and Related Models, 1 (2008), 415.

[20]

P. Hänggi, P. Talkner and M. Borkovec, Reaction-rate theory: fifty years after Kramers,, Reviews of Modern Physics, 62 (1990), 251. doi: 10.1103/RevModPhys.62.251.

[21]

J. Haskovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, Journal of Statistical Physics, 135 (2009), 133. doi: 10.1007/s10955-009-9717-1.

[22]

J. Haskovec and C. Schmeiser, Convergence analysis of a stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, Communications in Partial Differential Equations, 36 (2011), 940. doi: 10.1080/03605302.2010.538783.

[23]

N. Hill and D. Häder, A biased random walk model for the trajectories of swimming micro-organisms,, Journal of Theoretical Biology, 186 (1997), 503. doi: 10.1006/jtbi.1997.0421.

[24]

M. Kac, A stochastic model related to the telegrapher's equation,, Rocky Mountain Journal of Mathematics, 4 (1974), 497.

[25]

H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems,, Journal of Mathematical Biology, 26 (1988), 263. doi: 10.1007/BF00277392.

[26]

W. Rudin, "Functional Analysis,'', McGraw-Hill Science, (1991).

[27]

A. Sznitman, "Topics in Propagation of Chaos,'', Lecture notes in mathematics, 1464 (1991).

[28]

N. van Kampen, "Stochastic Processes in Physics and Chemistry,'', $3^{rd}$ edition, (2007).

[29]

C. Yates, R. Erban, C. Escudero, I. Couzin, J. Buhl, I. Kevrekidis, P. Maini and D. Sumpter, Inherent noise can facilitate coherence in collective swarm motion,, Proceedings of the National Academy of Sciences USA, 106 (2009), 5464. doi: 10.1073/pnas.0811195106.

show all references

References:
[1]

L. Baum and M. Katz, Convergence rates in the law of large numbers,, Transactions of the American Mathematical Society, 120 (1965), 108. doi: 10.1090/S0002-9947-1965-0198524-1.

[2]

S. Bazazi, J. Buhl, J. Hale, M. Anstey, G. Sword, S. Simpson and I. Couzin, Collective motion and cannibalism in locust migratory bands,, Current Biology, 18 (2008), 735. doi: 10.1016/j.cub.2008.04.035.

[3]

J. Buhl, D. Sumpter, I. Couzin, J. Hale, E. Despland, E. Miller and S. Simpson, From disorder to order in marching locusts,, Science, 312 (2006), 1402. doi: 10.1126/science.1125142.

[4]

J. Buhl, G. Sword, F. Clissold and S. Simpson, Group structure in locust migratory bands,, Behav. Ecol. Sociobiol., 65 (2011), 265. doi: 10.1007/s00265-010-1041-x.

[5]

J. Carrillo, M. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory,, Kinetic and Related Models, 2 (2009), 363.

[6]

J. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model,, SIAM Journal on Mathematical Analysis, 42 (2010), 218. doi: 10.1137/090757290.

[7]

J. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, hydrodynamic models of swarming,, in, (2010), 297.

[8]

C. Cercignani, R. Illner and M. Pulvirenti, "The Mathematical Theory of Dilute Gases,'', Applied Mathematical Sciences, 106 (1994).

[9]

E. Codling and N. Hill, Calculating spatial statistics for velocity jump processes with experimentally observed reorientation parameters,, Journal of Mathematical Biology, 51 (2005), 527. doi: 10.1007/s00285-005-0317-7.

[10]

A. Czirók, A. Barabási and T. Vicsek, Collective motion of self-propelled particles: Kinetic phase transition in one dimension,, Physical Review Letters, 82 (1999), 209. doi: 10.1103/PhysRevLett.82.209.

[11]

R. Erban, I. Kevrekidis, D. Adalsteinsson and T. Elston, Gene regulatory networks: A coarse-grained, equation-free approach to multiscale computation,, Journal of Chemical Physics, 124 (2006).

[12]

R. Erban and H. Othmer, From individual to collective behaviour in bacterial chemotaxis,, SIAM Journal on Applied Mathematics, 65 (2004), 361. doi: 10.1137/S0036139903433232.

[13]

R. Erban and H. Othmer, From signal transduction to spatial pattern formation in E. coli: A paradigm for multi-scale modeling in biology>,, Multiscale Modeling and Simulation, 3 (2005), 362.

[14]

C. Escudero, C. Yates, J. Buhl, I. Couzin, R. Erban, I. Kevrekidis and P. Maini, Ergodic directional switching in mobile insect groups,, Physical Review E, 82 (2010).

[15]

L. Evans, "Partial Differential Equations,'', American Mathematical Society, (1998).

[16]

W. Feller, "An Introduction to Probability Theory and its Applications,'', $3^{rd}$ edition, (1967).

[17]

M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via the povzner-boltzmann equation,, Physica D: Nonlinear Phenomena, 240 (2011), 21. doi: 10.1016/j.physd.2010.08.003.

[18]

D. Gillespie, "Markov Processes, An Introduction for Physical Scientists,'', Academic Press, (1992).

[19]

S. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking,, Kinetic and Related Models, 1 (2008), 415.

[20]

P. Hänggi, P. Talkner and M. Borkovec, Reaction-rate theory: fifty years after Kramers,, Reviews of Modern Physics, 62 (1990), 251. doi: 10.1103/RevModPhys.62.251.

[21]

J. Haskovec and C. Schmeiser, Stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, Journal of Statistical Physics, 135 (2009), 133. doi: 10.1007/s10955-009-9717-1.

[22]

J. Haskovec and C. Schmeiser, Convergence analysis of a stochastic particle approximation for measure valued solutions of the 2D Keller-Segel system,, Communications in Partial Differential Equations, 36 (2011), 940. doi: 10.1080/03605302.2010.538783.

[23]

N. Hill and D. Häder, A biased random walk model for the trajectories of swimming micro-organisms,, Journal of Theoretical Biology, 186 (1997), 503. doi: 10.1006/jtbi.1997.0421.

[24]

M. Kac, A stochastic model related to the telegrapher's equation,, Rocky Mountain Journal of Mathematics, 4 (1974), 497.

[25]

H. Othmer, S. Dunbar and W. Alt, Models of dispersal in biological systems,, Journal of Mathematical Biology, 26 (1988), 263. doi: 10.1007/BF00277392.

[26]

W. Rudin, "Functional Analysis,'', McGraw-Hill Science, (1991).

[27]

A. Sznitman, "Topics in Propagation of Chaos,'', Lecture notes in mathematics, 1464 (1991).

[28]

N. van Kampen, "Stochastic Processes in Physics and Chemistry,'', $3^{rd}$ edition, (2007).

[29]

C. Yates, R. Erban, C. Escudero, I. Couzin, J. Buhl, I. Kevrekidis, P. Maini and D. Sumpter, Inherent noise can facilitate coherence in collective swarm motion,, Proceedings of the National Academy of Sciences USA, 106 (2009), 5464. doi: 10.1073/pnas.0811195106.

[1]

Jishan Fan, Tohru Ozawa. An approximation model for the density-dependent magnetohydrodynamic equations. Conference Publications, 2013, 2013 (special) : 207-216. doi: 10.3934/proc.2013.2013.207

[2]

Jacques A. L. Silva, Flávia T. Giordani. Density-dependent dispersal in multiple species metapopulations. Mathematical Biosciences & Engineering, 2008, 5 (4) : 843-857. doi: 10.3934/mbe.2008.5.843

[3]

Jishan Fan, Tohru Ozawa. Global Cauchy problem of an ideal density-dependent MHD-$\alpha$ model. Conference Publications, 2011, 2011 (Special) : 400-409. doi: 10.3934/proc.2011.2011.400

[4]

Tracy L. Stepien, Erica M. Rutter, Yang Kuang. A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1157-1172. doi: 10.3934/mbe.2015.12.1157

[5]

Kaigang Huang, Yongli Cai, Feng Rao, Shengmao Fu, Weiming Wang. Positive steady states of a density-dependent predator-prey model with diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3087-3107. doi: 10.3934/dcdsb.2017209

[6]

William Wolesensky, J. David Logan. An individual, stochastic model of growth incorporating state-dependent risk and random foraging and climate. Mathematical Biosciences & Engineering, 2007, 4 (1) : 67-84. doi: 10.3934/mbe.2007.4.67

[7]

Pierre Degond, Silke Henkes, Hui Yu. Self-organized hydrodynamics with density-dependent velocity. Kinetic & Related Models, 2017, 10 (1) : 193-213. doi: 10.3934/krm.2017008

[8]

J. X. Velasco-Hernández, M. Núñez-López, G. Ramírez-Santiago, M. Hernández-Rosales. On carrying-capacity construction, metapopulations and density-dependent mortality. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1099-1110. doi: 10.3934/dcdsb.2017054

[9]

Baojun Song, Wen Du, Jie Lou. Different types of backward bifurcations due to density-dependent treatments. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1651-1668. doi: 10.3934/mbe.2013.10.1651

[10]

Laurent Boudin, Francesco Salvarani. The quasi-invariant limit for a kinetic model of sociological collective behavior. Kinetic & Related Models, 2009, 2 (3) : 433-449. doi: 10.3934/krm.2009.2.433

[11]

Deborah C. Markham, Ruth E. Baker, Philip K. Maini. Modelling collective cell behaviour. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5123-5133. doi: 10.3934/dcds.2014.34.5123

[12]

Quansen Jiu, Zhouping Xin. The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients. Kinetic & Related Models, 2008, 1 (2) : 313-330. doi: 10.3934/krm.2008.1.313

[13]

Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20

[14]

Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175

[15]

Xulong Qin, Zheng-An Yao, Hongxing Zhao. One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries. Communications on Pure & Applied Analysis, 2008, 7 (2) : 373-381. doi: 10.3934/cpaa.2008.7.373

[16]

Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395

[17]

Xulong Qin, Zheng-An Yao. Global solutions of the free boundary problem for the compressible Navier-Stokes equations with density-dependent viscosity. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1041-1052. doi: 10.3934/cpaa.2010.9.1041

[18]

Weiping Yan. Existence of weak solutions to the three-dimensional density-dependent generalized incompressible magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1359-1385. doi: 10.3934/dcds.2015.35.1359

[19]

Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001

[20]

Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]