2013, 12(4): 1527-1546. doi: 10.3934/cpaa.2013.12.1527

Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions

1. 

CMAF, University of Lisbon, Portugal

2. 

Institute of Mathematics, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich

3. 

University of Oviedo, Spain

Received  March 2011 Revised  September 2011 Published  November 2012

The paper addresses the Dirichlet problem for the doubly nonlinear parabolic equation with nonstandard growth conditions: \begin{eqnarray} u_{t}=div(a(x,t,u)|u|^{\alpha(x,t)}|\nabla u|^{p(x,t)-2} \nabla u) +f(x,t) \end{eqnarray} with given variable exponents $\alpha(x,t)$ and $p(x,t)$. We establish conditions on the data which guarantee the comparison principle and uniqueness of bounded weak solutions in suitable function spaces of Orlicz-Sobolev type.
Citation: Stanislav Antontsev, Michel Chipot, Sergey Shmarev. Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1527-1546. doi: 10.3934/cpaa.2013.12.1527
References:
[1]

Y. Alkhutov, S. Antontsev and V. Zhikov, Parabolic equations with variable order of nonlinearity,, Zb. Pr. Inst. Mat. NAN Ukr., 6 (2009), 23.

[2]

S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results,, Differ. Integral Equ., 21 (2008), 401.

[3]

S. Antontsev, M. Chipot and Y. Xie, Uniqueness results for equations of the $p(x)$-aplacian type,, Adv. Math. Sci. Appl., 17 (2007), 287.

[4]

S. Antontsev and V. Zhikov, Higher integrability for parabolic equations of $p(x,t)$-Laplacian type,, Adv. Differential Equations, 10 (2005), 1053.

[5]

S. Antontsev, Localization of solutions of degenerate equations of continuum mechanics, Akad. Nauk SSSR Sibirsk. Otdel. Inst. Gidrodinamiki, Novosibirsk, 1986., (in Russian;, ().

[6]

S. Antontsev, J. I. Díaz and S. Shmarev, "Energy Methods for Free Boundary Problems: Applications to Non-linear PDEs and Fluid Mechanics,", Bikhäuser, (2002). doi: 10.1115/1.1483358.

[7]

S. Antontsev and S. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Elsevier, 2006., Handbook of Differential Equations. Stationary Partial Differential Equations, (): 1. doi: 10.1016/S1874-5733(06)80005-7.

[8]

S. Antontsev and S. Shmarev, Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity,, Fundam. Prikl. Mat., 12 (2006). doi: 10.1016/S1874-5733(06)80005-7.

[9]

S. Antontsev and S. Shmarev, Vanishing solutions of anisotropic parabolic equations with variable nonlinearity,, J. Math. Anal. Appl., 361 (2010), 371. doi: 10.1016/j.jmaa.2009.07.019.

[10]

S. Antontsev and S. Shmarev, Anisotropic parabolic equations with variable nonlinearity,, Publ. Mat., 53 (2009), 355.

[11]

S. Antontsev and S. Shmarev, Parabolic equations with double variable nonlinearities,, Math. Comput. Simulation, 81 (2011), 2018. doi: 10.1016/j.matcom.2010.12.015.

[12]

S. Antontsev and S. Shmarev, Elliptic equations with triple variable nonlinearity,, Complex Var. Elliptic Equ., 56 (2011), 573. doi: 10.1080/17476933.2010.504844.

[13]

M. Chipot, "Elliptic Equations: An Introductory Course,", A series of Advanced Textbooks in Mathematics, (2009). doi: 10.1007/978-3-7643-9982-5_7.

[14]

M. Chipot and J.-F. Rodrigues, Comparison and stability of solutions to a class of quasilinear parabolic problems,, Proc. Roy. Soc. Edinburgh Sect. A, 110 (1988), 275. doi: 10.1017/S0308210500022265.

[15]

Ju. Dubinskii, Weak convergence for nonlinear elliptic and parabolic equations,, Mat. Sb., 67 (1965), 609.

[16]

J. Díaz and J. Padial, Uniqueness and existence of a solution in $BV_t(q)$ space to a doubly nonlinear parabolic problem,, Publ. Mat., 40 (1996), 527.

[17]

J. Díaz and F. Thélin, On a nonlinear parabolic problem arising in some models related to turbulent flows,, SIAM J. Math. Anal., 25 (1994), 1085. doi: 10.1137/S0036141091217731.

[18]

L. Diening, Maximal function on generalized Lebesgue spaces $L^p(\cdot)$,, Math. Inequal. Appl., 7 (2004), 245. doi: 10.7153/mia-07-27.

[19]

D. Edmunds and J. Rákosnĭk, Sobolev embeddings with variable exponent,, Studia Math., 143 (2000), 267.

[20]

P. Harjulento and P. Hästoö, An overview of variable exponent Lebesgue and Sobolev spaces,, in Future trends in geometric function theory, ().

[21]

A. I. Ivanov and J. F. Rodrigues, Existence and uniqueness of a weak solution to the initial mixed boundary-value problem for quasilinear elliptic-parabolic equations,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov, 259 (1999), 67. doi: 10.1023/A:1014488123746.

[22]

A. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations,, Russian Math. Surveys, 42 (1987), 169. doi: 10.1070/RM1987v042n02ABEH001309.

[23]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, , Czechoslovak Math. J., 116 (1991), 592.

[24]

G. I. Laptev, Solvability of second-order quasilinear parabolic equations with double degeneration,, Sibirsk. Mat. Zh., 38 (1997), 1335. doi: 10.1007/BF02675942.

[25]

J. Musielak, "Orlicz Spaces and Modular Spaces,", vol. 1034 of Lecture Notes in Mathematics, (1034). doi: 10.1007/BFb0072212.

[26]

S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators,, Integral Transforms Spec. Funct., 16 (2005), 461. doi: 10.1080/10652460412331320322.

[27]

S. Samko, Density $C^\infty_0 (R^n)$ in the generalized Sobolev spaces $W^{m,p(x)}(R^n)$,, Dokl. Akad. Nauk, 369 (1999), 451.

[28]

K. Soltanov, Some nonlinear equations of the nonstable filtration type and embedding theorems,, Nonlinear Anal., 65 (2006), 2103. doi: 10.1016/j.na.2005.11.053.

[29]

M. Sango, Local boundedness for doubly degenerate quasi-linear parabolic systems,, Appl. Math. Lett., 16 (2003), 465. doi: 10.1016/S0893-9659(03)00021-1.

[30]

A. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations,, Appl. Anal., 86 (2007), 755. doi: 10.1080/00036810701435711.

[31]

S. Degtyarev and A. Tedeev, $L_1$-$L_\infty$ estimates for the solution of the Cauchy problem for an anisotropic degenerate parabolic equation with double nonlinearity and growing initial data,, Mat. Sb., 198 (2007), 45. doi: 10.1070/SM2007v198n05ABEH003853.

[32]

P. Cianci, A. Martynenko and A. Tedeev, The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source,, Nonlinear Anal., 73 (2010), 2310. doi: 10.1016/j.na.2010.06.026.

[33]

C. Vázquez, E. Schiavi, J. Durany, J. I. Díaz and N. Calvo, On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics,, SIAM J. Appl. Math., 63 (2003), 683. doi: 10.1137/S0036139901385345.

[34]

V. Zhikov, On Lavrentiev's effect,, Dokl. Akad. Nauk, 345 (1995), 10.

[35]

V. Zhikov, On Lavrentiev's phenomenon,, Russian J. Math. Phys., 3 (1995), 249.

[36]

V. Zhikov, On the density of smooth functions in Sobolev-Orlich spaces,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), 1. doi: 10.1007/s10958-005-0497-0.

show all references

References:
[1]

Y. Alkhutov, S. Antontsev and V. Zhikov, Parabolic equations with variable order of nonlinearity,, Zb. Pr. Inst. Mat. NAN Ukr., 6 (2009), 23.

[2]

S. Antontsev and M. Chipot, Anisotropic equations: uniqueness and existence results,, Differ. Integral Equ., 21 (2008), 401.

[3]

S. Antontsev, M. Chipot and Y. Xie, Uniqueness results for equations of the $p(x)$-aplacian type,, Adv. Math. Sci. Appl., 17 (2007), 287.

[4]

S. Antontsev and V. Zhikov, Higher integrability for parabolic equations of $p(x,t)$-Laplacian type,, Adv. Differential Equations, 10 (2005), 1053.

[5]

S. Antontsev, Localization of solutions of degenerate equations of continuum mechanics, Akad. Nauk SSSR Sibirsk. Otdel. Inst. Gidrodinamiki, Novosibirsk, 1986., (in Russian;, ().

[6]

S. Antontsev, J. I. Díaz and S. Shmarev, "Energy Methods for Free Boundary Problems: Applications to Non-linear PDEs and Fluid Mechanics,", Bikhäuser, (2002). doi: 10.1115/1.1483358.

[7]

S. Antontsev and S. Shmarev, Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions, Elsevier, 2006., Handbook of Differential Equations. Stationary Partial Differential Equations, (): 1. doi: 10.1016/S1874-5733(06)80005-7.

[8]

S. Antontsev and S. Shmarev, Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity,, Fundam. Prikl. Mat., 12 (2006). doi: 10.1016/S1874-5733(06)80005-7.

[9]

S. Antontsev and S. Shmarev, Vanishing solutions of anisotropic parabolic equations with variable nonlinearity,, J. Math. Anal. Appl., 361 (2010), 371. doi: 10.1016/j.jmaa.2009.07.019.

[10]

S. Antontsev and S. Shmarev, Anisotropic parabolic equations with variable nonlinearity,, Publ. Mat., 53 (2009), 355.

[11]

S. Antontsev and S. Shmarev, Parabolic equations with double variable nonlinearities,, Math. Comput. Simulation, 81 (2011), 2018. doi: 10.1016/j.matcom.2010.12.015.

[12]

S. Antontsev and S. Shmarev, Elliptic equations with triple variable nonlinearity,, Complex Var. Elliptic Equ., 56 (2011), 573. doi: 10.1080/17476933.2010.504844.

[13]

M. Chipot, "Elliptic Equations: An Introductory Course,", A series of Advanced Textbooks in Mathematics, (2009). doi: 10.1007/978-3-7643-9982-5_7.

[14]

M. Chipot and J.-F. Rodrigues, Comparison and stability of solutions to a class of quasilinear parabolic problems,, Proc. Roy. Soc. Edinburgh Sect. A, 110 (1988), 275. doi: 10.1017/S0308210500022265.

[15]

Ju. Dubinskii, Weak convergence for nonlinear elliptic and parabolic equations,, Mat. Sb., 67 (1965), 609.

[16]

J. Díaz and J. Padial, Uniqueness and existence of a solution in $BV_t(q)$ space to a doubly nonlinear parabolic problem,, Publ. Mat., 40 (1996), 527.

[17]

J. Díaz and F. Thélin, On a nonlinear parabolic problem arising in some models related to turbulent flows,, SIAM J. Math. Anal., 25 (1994), 1085. doi: 10.1137/S0036141091217731.

[18]

L. Diening, Maximal function on generalized Lebesgue spaces $L^p(\cdot)$,, Math. Inequal. Appl., 7 (2004), 245. doi: 10.7153/mia-07-27.

[19]

D. Edmunds and J. Rákosnĭk, Sobolev embeddings with variable exponent,, Studia Math., 143 (2000), 267.

[20]

P. Harjulento and P. Hästoö, An overview of variable exponent Lebesgue and Sobolev spaces,, in Future trends in geometric function theory, ().

[21]

A. I. Ivanov and J. F. Rodrigues, Existence and uniqueness of a weak solution to the initial mixed boundary-value problem for quasilinear elliptic-parabolic equations,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov, 259 (1999), 67. doi: 10.1023/A:1014488123746.

[22]

A. Kalashnikov, Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations,, Russian Math. Surveys, 42 (1987), 169. doi: 10.1070/RM1987v042n02ABEH001309.

[23]

O. Kováčik and J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, , Czechoslovak Math. J., 116 (1991), 592.

[24]

G. I. Laptev, Solvability of second-order quasilinear parabolic equations with double degeneration,, Sibirsk. Mat. Zh., 38 (1997), 1335. doi: 10.1007/BF02675942.

[25]

J. Musielak, "Orlicz Spaces and Modular Spaces,", vol. 1034 of Lecture Notes in Mathematics, (1034). doi: 10.1007/BFb0072212.

[26]

S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators,, Integral Transforms Spec. Funct., 16 (2005), 461. doi: 10.1080/10652460412331320322.

[27]

S. Samko, Density $C^\infty_0 (R^n)$ in the generalized Sobolev spaces $W^{m,p(x)}(R^n)$,, Dokl. Akad. Nauk, 369 (1999), 451.

[28]

K. Soltanov, Some nonlinear equations of the nonstable filtration type and embedding theorems,, Nonlinear Anal., 65 (2006), 2103. doi: 10.1016/j.na.2005.11.053.

[29]

M. Sango, Local boundedness for doubly degenerate quasi-linear parabolic systems,, Appl. Math. Lett., 16 (2003), 465. doi: 10.1016/S0893-9659(03)00021-1.

[30]

A. Tedeev, The interface blow-up phenomenon and local estimates for doubly degenerate parabolic equations,, Appl. Anal., 86 (2007), 755. doi: 10.1080/00036810701435711.

[31]

S. Degtyarev and A. Tedeev, $L_1$-$L_\infty$ estimates for the solution of the Cauchy problem for an anisotropic degenerate parabolic equation with double nonlinearity and growing initial data,, Mat. Sb., 198 (2007), 45. doi: 10.1070/SM2007v198n05ABEH003853.

[32]

P. Cianci, A. Martynenko and A. Tedeev, The blow-up phenomenon for degenerate parabolic equations with variable coefficients and nonlinear source,, Nonlinear Anal., 73 (2010), 2310. doi: 10.1016/j.na.2010.06.026.

[33]

C. Vázquez, E. Schiavi, J. Durany, J. I. Díaz and N. Calvo, On a doubly nonlinear parabolic obstacle problem modelling ice sheet dynamics,, SIAM J. Appl. Math., 63 (2003), 683. doi: 10.1137/S0036139901385345.

[34]

V. Zhikov, On Lavrentiev's effect,, Dokl. Akad. Nauk, 345 (1995), 10.

[35]

V. Zhikov, On Lavrentiev's phenomenon,, Russian J. Math. Phys., 3 (1995), 249.

[36]

V. Zhikov, On the density of smooth functions in Sobolev-Orlich spaces,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310 (2004), 1. doi: 10.1007/s10958-005-0497-0.

[1]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[2]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[3]

Tomasz Adamowicz, Przemysław Górka. The Liouville theorems for elliptic equations with nonstandard growth. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2377-2392. doi: 10.3934/cpaa.2015.14.2377

[4]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[5]

Patrick Winkert, Rico Zacher. A priori bounds for weak solutions to elliptic equations with nonstandard growth. Discrete & Continuous Dynamical Systems - S, 2012, 5 (4) : 865-878. doi: 10.3934/dcdss.2012.5.865

[6]

Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493

[7]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[8]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks & Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189

[9]

Alexandre Nolasco de Carvalho, Marcos Roberto Teixeira Primo. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 637-651. doi: 10.3934/cpaa.2004.3.637

[10]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[11]

Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612

[12]

Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451

[13]

H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

[14]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[15]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Distributed optimal control of a nonstandard nonlocal phase field system with double obstacle potential. Evolution Equations & Control Theory, 2017, 6 (1) : 35-58. doi: 10.3934/eect.2017003

[16]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[17]

Joachim von Below, Gaëlle Pincet Mailly, Jean-François Rault. Growth order and blow up points for the parabolic Burgers' equation under dynamical boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 825-836. doi: 10.3934/dcdss.2013.6.825

[18]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[19]

Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1147-1168. doi: 10.3934/cpaa.2017056

[20]

Goro Akagi. Doubly nonlinear parabolic equations involving variable exponents. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 1-16. doi: 10.3934/dcdss.2014.7.1

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (5)

[Back to Top]