July  2013, 12(4): 1705-1729. doi: 10.3934/cpaa.2013.12.1705

A cohesive crack propagation model: Mathematical theory and numerical solution

1. 

Applied Mathematics II, Martensstr. 3, D-91054 Erlangen, Germany, Germany

2. 

Chair of Applied Mechanics, Egerlandstr. 5, D-91058 Erlangen, Germany

3. 

Applied Mathematics II, Martensstr. 3, D-91058 Erlangen, Germany

Received  February 2011 Revised  November 2011 Published  November 2012

We investigate the propagation of cracks in 2-d elastic domains, which are subjected to quasi-static loading scenarios. As we take cohesive effects along the crack path into account and impose a non-penetration condition, inequalities appear in the constitutive equations describing the elastic behavior of a domain with crack. In contrast to existing approaches, we consider cohesive effects arising from crack opening in normal as well as in tangential direction. We establish a constrained energy minimization problem and show that the solution of this problem satisfies the set of constitutive equations. In order to solve the energy minimization problem numerically, we apply a finite element discretization using a combination of standard continuous finite elements with so-called cohesive elements. A particular strength of our method is that the crack path is a result of the minimization process. We conclude the article by numerical experiments and compare our results to results given in the literature.
Citation: G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705
References:
[1]

A. A. Griffith, The phenomena of rupture and flow in solids,, Philos Trans R Soc Lond A, 221 (1921), 163. Google Scholar

[2]

G. R. Irwin, Fracture,, in, (1958), 551. Google Scholar

[3]

G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture,, Advan. Appl. Mech., 7 (1962), 55. Google Scholar

[4]

H. Stumpf and K. Ch. Le, Variational principles of nonlinear fracture mechanics,, Acta Mech, 83 (1990), 25. Google Scholar

[5]

G. A. Maugin and C. Trimarco, Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture,, Acta Mech, 94 (1992), 1. Google Scholar

[6]

J. D. Eshelby, The continuum theory of lattice defects,, in, (1956). Google Scholar

[7]

J. R. Rice, A path independent integral and the approximate analysis of strain concentraction by notches and cracks,, J. Appl. Mech., 35 (1968), 379. Google Scholar

[8]

M. Buliga, Energy minimizing brittle crack propagation,, J Elast, 52 (1999), 201. Google Scholar

[9]

N. Kikuchi and J. T. Oden, "The Variational Approach to Fracture,", SIAM, (1988). Google Scholar

[10]

A. M. Khludnev and V. A. Kovtunenko, "Analysis of Cracks in Solids,", WIT Press, (1999). Google Scholar

[11]

B. Bourdin, G. A. Francfort and J.-J. Marigo, "Contact Problems in Elasticity,", Springer, (2008). Google Scholar

[12]

S. A. Nazarov and M. Specovius-Neugebauer, Use of the energy criterion of fracture to determine the shape of a slightly curved crack,, Journal of Applied Mechanics and Technical Physics, 47 (2006), 714. Google Scholar

[13]

J. R. Rice and E. P. Sorensen, Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids,, J Mech Phys Solids, 26 (1978), 163. Google Scholar

[14]

M. Fleming, Y. A. Chu, B. Moran and T. Belytschko, Enriched element-free Galerkin methods for crack tip fields,, Int J Numer Methods Eng, 40 (1997), 1483. Google Scholar

[15]

T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing,, Int J Numer Methods Eng, 45 (1999), 601. Google Scholar

[16]

D. R. Curran, L. Seaman, T. Cooper and D. A. Shockey, Micromechanical model for comminution and granular flow of brittle material under high strain rate application to penetration of ceramic targets,, Int J Impact Eng, 13 (1993), 53. Google Scholar

[17]

A. Needleman, A continuum model for void nucleation by inclusion debonding,, J. Appl. Mech., 54 (1987), 525. Google Scholar

[18]

D. S. Dugdale, Yielding of steel sheets containing slits,, J Mech Phys Solids, 8 (1960), 100. Google Scholar

[19]

V. Tvergaard and J. W. Hutchinson, The influence of plasticity on mixed mode interface toughness,, J Mech Phys Solids, 41 (1993), 1119. Google Scholar

[20]

G. T. Camacho and M. Ortiz, Computational modelling of impact damage in brittle materials,, Int J Solids Struct, 33 (1996), 2899. Google Scholar

[21]

X.-P. Xu and A. Needleman, Numerical simulations of fast crack growth in brittle solids,, Mech Phys Solids, 42 (1994), 1397. Google Scholar

[22]

M. Ortiz and A. Pandolfi, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis,, Int J Numer Methods Eng, 44 (1999), 1267. Google Scholar

[23]

M. E. Walter, G. Ravichandran and M. Ortiz, Computational modeling of damage evolution in unidirectional fiber reinforced ceramic matrix composites,, Computational Mechanics, 20 (1997), 192. Google Scholar

[24]

J. Mergheim, E. Kuhl and P. Steinmann, A hybrid discontinuous Galerkin/interface method for the computational modelling of failure,, Commun Numer Methods Eng, 20 (2004), 511. Google Scholar

[25]

V. A. Kovtunenko, Nonconvex problem for crack with nonpenetration,, ZAMM Z. Angew. Math. Mech., 85 (2005), 242. Google Scholar

[26]

D. Hull, An introduction to composite materials,, in, (1981), 1. Google Scholar

[27]

J. C. J. Schellekens and R. de Borst, On the numerical integration of interface elements,, Int J Numer Methods Engng, 36 (1993), 43. Google Scholar

[28]

F. Zhou, J.F. Molinari and T. Shioya, A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials,, Eng Fract Mech, 72 (2005), 1383. Google Scholar

[29]

G. Geissler and M. Kaliske, Time-dependent cohesive zone modelling for discrete fracture simulation,, Eng Fract Mech, 77 (2010), 153. Google Scholar

[30]

R. De Borst, L. J. Sluys, H.-B. Mühlhaus and J. Pamin, Fundamental issues in finite element analyses of localization of deformation,, Engineering Computations, 10 (1993), 99. Google Scholar

[31]

M. Prechtel, P. Leiva Ronda, R. Janisch, A. Hartmaier, G. Leugering, P. Steinmann and M. Stingl, Simulation of fracture in heterogeneous elastic materials with cohesive zone models,, Int J Fract, 168 (2011), 15. Google Scholar

[32]

H. Amor, J.-J. Marigo and C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments,, J. Mech. Phys. Solids, 57 (2009), 1209. Google Scholar

[33]

M. Prechtel, G. Leugering, P. Steinmann and M. Stingl, Towards optimization of crack resistance of composite materials by adjustment of fiber shapes Reference,, Eng Fract Mech, 78 (2011), 944. Google Scholar

[34]

N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods,", SIAM Studies in Applied Mathematics, (1988). Google Scholar

[35]

M. Burger, "Infinite-dimensional Optimization and Optimal Design,", 2003., (). Google Scholar

[36]

A. W鋍hter and L. T. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming,, Mathematical Programming, 106 (2006), 25. Google Scholar

[37]

M. Hintermüller, V. A. Kovtunenko and K. Kunisch, Obstacle problems with cohesion: a hemivariational inequality approach and its efficient numerical solution,, SIAM J Optim, 21 (2011), 491. Google Scholar

[38]

V. A. Kovtunenko, A hemivariational inequality in crack problems,, Optimization, (). Google Scholar

[39]

N. Chandra, H. Li, C. Shet and H. Ghonem, Some issues in the application of cohesive zone models for metal-ceramic interfaces,, Int J Solid Struct, 39 (2002), 2827. Google Scholar

[40]

A. Banerjea and J. R. Smith, Origins of the universal binding-energy relation,, Phys Rev B, 37 (1988), 6632. Google Scholar

show all references

References:
[1]

A. A. Griffith, The phenomena of rupture and flow in solids,, Philos Trans R Soc Lond A, 221 (1921), 163. Google Scholar

[2]

G. R. Irwin, Fracture,, in, (1958), 551. Google Scholar

[3]

G. I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture,, Advan. Appl. Mech., 7 (1962), 55. Google Scholar

[4]

H. Stumpf and K. Ch. Le, Variational principles of nonlinear fracture mechanics,, Acta Mech, 83 (1990), 25. Google Scholar

[5]

G. A. Maugin and C. Trimarco, Pseudomomentum and material forces in nonlinear elasticity: variational formulations and application to brittle fracture,, Acta Mech, 94 (1992), 1. Google Scholar

[6]

J. D. Eshelby, The continuum theory of lattice defects,, in, (1956). Google Scholar

[7]

J. R. Rice, A path independent integral and the approximate analysis of strain concentraction by notches and cracks,, J. Appl. Mech., 35 (1968), 379. Google Scholar

[8]

M. Buliga, Energy minimizing brittle crack propagation,, J Elast, 52 (1999), 201. Google Scholar

[9]

N. Kikuchi and J. T. Oden, "The Variational Approach to Fracture,", SIAM, (1988). Google Scholar

[10]

A. M. Khludnev and V. A. Kovtunenko, "Analysis of Cracks in Solids,", WIT Press, (1999). Google Scholar

[11]

B. Bourdin, G. A. Francfort and J.-J. Marigo, "Contact Problems in Elasticity,", Springer, (2008). Google Scholar

[12]

S. A. Nazarov and M. Specovius-Neugebauer, Use of the energy criterion of fracture to determine the shape of a slightly curved crack,, Journal of Applied Mechanics and Technical Physics, 47 (2006), 714. Google Scholar

[13]

J. R. Rice and E. P. Sorensen, Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids,, J Mech Phys Solids, 26 (1978), 163. Google Scholar

[14]

M. Fleming, Y. A. Chu, B. Moran and T. Belytschko, Enriched element-free Galerkin methods for crack tip fields,, Int J Numer Methods Eng, 40 (1997), 1483. Google Scholar

[15]

T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing,, Int J Numer Methods Eng, 45 (1999), 601. Google Scholar

[16]

D. R. Curran, L. Seaman, T. Cooper and D. A. Shockey, Micromechanical model for comminution and granular flow of brittle material under high strain rate application to penetration of ceramic targets,, Int J Impact Eng, 13 (1993), 53. Google Scholar

[17]

A. Needleman, A continuum model for void nucleation by inclusion debonding,, J. Appl. Mech., 54 (1987), 525. Google Scholar

[18]

D. S. Dugdale, Yielding of steel sheets containing slits,, J Mech Phys Solids, 8 (1960), 100. Google Scholar

[19]

V. Tvergaard and J. W. Hutchinson, The influence of plasticity on mixed mode interface toughness,, J Mech Phys Solids, 41 (1993), 1119. Google Scholar

[20]

G. T. Camacho and M. Ortiz, Computational modelling of impact damage in brittle materials,, Int J Solids Struct, 33 (1996), 2899. Google Scholar

[21]

X.-P. Xu and A. Needleman, Numerical simulations of fast crack growth in brittle solids,, Mech Phys Solids, 42 (1994), 1397. Google Scholar

[22]

M. Ortiz and A. Pandolfi, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis,, Int J Numer Methods Eng, 44 (1999), 1267. Google Scholar

[23]

M. E. Walter, G. Ravichandran and M. Ortiz, Computational modeling of damage evolution in unidirectional fiber reinforced ceramic matrix composites,, Computational Mechanics, 20 (1997), 192. Google Scholar

[24]

J. Mergheim, E. Kuhl and P. Steinmann, A hybrid discontinuous Galerkin/interface method for the computational modelling of failure,, Commun Numer Methods Eng, 20 (2004), 511. Google Scholar

[25]

V. A. Kovtunenko, Nonconvex problem for crack with nonpenetration,, ZAMM Z. Angew. Math. Mech., 85 (2005), 242. Google Scholar

[26]

D. Hull, An introduction to composite materials,, in, (1981), 1. Google Scholar

[27]

J. C. J. Schellekens and R. de Borst, On the numerical integration of interface elements,, Int J Numer Methods Engng, 36 (1993), 43. Google Scholar

[28]

F. Zhou, J.F. Molinari and T. Shioya, A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials,, Eng Fract Mech, 72 (2005), 1383. Google Scholar

[29]

G. Geissler and M. Kaliske, Time-dependent cohesive zone modelling for discrete fracture simulation,, Eng Fract Mech, 77 (2010), 153. Google Scholar

[30]

R. De Borst, L. J. Sluys, H.-B. Mühlhaus and J. Pamin, Fundamental issues in finite element analyses of localization of deformation,, Engineering Computations, 10 (1993), 99. Google Scholar

[31]

M. Prechtel, P. Leiva Ronda, R. Janisch, A. Hartmaier, G. Leugering, P. Steinmann and M. Stingl, Simulation of fracture in heterogeneous elastic materials with cohesive zone models,, Int J Fract, 168 (2011), 15. Google Scholar

[32]

H. Amor, J.-J. Marigo and C. Maurini, Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments,, J. Mech. Phys. Solids, 57 (2009), 1209. Google Scholar

[33]

M. Prechtel, G. Leugering, P. Steinmann and M. Stingl, Towards optimization of crack resistance of composite materials by adjustment of fiber shapes Reference,, Eng Fract Mech, 78 (2011), 944. Google Scholar

[34]

N. Kikuchi and J. T. Oden, "Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods,", SIAM Studies in Applied Mathematics, (1988). Google Scholar

[35]

M. Burger, "Infinite-dimensional Optimization and Optimal Design,", 2003., (). Google Scholar

[36]

A. W鋍hter and L. T. Biegler, On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming,, Mathematical Programming, 106 (2006), 25. Google Scholar

[37]

M. Hintermüller, V. A. Kovtunenko and K. Kunisch, Obstacle problems with cohesion: a hemivariational inequality approach and its efficient numerical solution,, SIAM J Optim, 21 (2011), 491. Google Scholar

[38]

V. A. Kovtunenko, A hemivariational inequality in crack problems,, Optimization, (). Google Scholar

[39]

N. Chandra, H. Li, C. Shet and H. Ghonem, Some issues in the application of cohesive zone models for metal-ceramic interfaces,, Int J Solid Struct, 39 (2002), 2827. Google Scholar

[40]

A. Banerjea and J. R. Smith, Origins of the universal binding-energy relation,, Phys Rev B, 37 (1988), 6632. Google Scholar

[1]

Rejeb Hadiji, Ken Shirakawa. 3D-2D asymptotic observation for minimization problems associated with degenerate energy-coefficients. Conference Publications, 2011, 2011 (Special) : 624-633. doi: 10.3934/proc.2011.2011.624

[2]

Roman VodiČka, Vladislav MantiČ. An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1539-1561. doi: 10.3934/dcdss.2017079

[3]

Xavier Dubois de La Sablonière, Benjamin Mauroy, Yannick Privat. Shape minimization of the dissipated energy in dyadic trees. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 767-799. doi: 10.3934/dcdsb.2011.16.767

[4]

Tianliang Hou, Yanping Chen. Superconvergence for elliptic optimal control problems discretized by RT1 mixed finite elements and linear discontinuous elements. Journal of Industrial & Management Optimization, 2013, 9 (3) : 631-642. doi: 10.3934/jimo.2013.9.631

[5]

Jiayu Han. Nonconforming elements of class $L^2$ for Helmholtz transmission eigenvalue problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3195-3212. doi: 10.3934/dcdsb.2018281

[6]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[7]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems & Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267

[8]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems & Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215

[9]

Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent mean-field stochastic linear quadratic problems. I. Mathematical Control & Related Fields, 2019, 9 (2) : 385-409. doi: 10.3934/mcrf.2019018

[10]

Anass Belcaid, Mohammed Douimi, Abdelkader Fassi Fihri. Recursive reconstruction of piecewise constant signals by minimization of an energy function. Inverse Problems & Imaging, 2018, 12 (4) : 903-920. doi: 10.3934/ipi.2018038

[11]

Riccardo Adami, Diego Noja, Nicola Visciglia. Constrained energy minimization and ground states for NLS with point defects. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1155-1188. doi: 10.3934/dcdsb.2013.18.1155

[12]

M. Montaz Ali. A recursive topographical differential evolution algorithm for potential energy minimization. Journal of Industrial & Management Optimization, 2010, 6 (1) : 29-46. doi: 10.3934/jimo.2010.6.29

[13]

Piernicola Bettiol, Nathalie Khalil. Necessary optimality conditions for average cost minimization problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2093-2124. doi: 10.3934/dcdsb.2019086

[14]

Haïm Brezis. Remarks on some minimization problems associated with BV norms. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-17. doi: 10.3934/dcds.2019242

[15]

Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020103

[16]

Sanming Liu, Zhijie Wang, Chongyang Liu. Proximal iterative Gaussian smoothing algorithm for a class of nonsmooth convex minimization problems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 79-89. doi: 10.3934/naco.2015.5.79

[17]

Luchuan Ceng, Qamrul Hasan Ansari, Jen-Chih Yao. Extragradient-projection method for solving constrained convex minimization problems. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 341-359. doi: 10.3934/naco.2011.1.341

[18]

Yu-Ning Yang, Su Zhang. On linear convergence of projected gradient method for a class of affine rank minimization problems. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1507-1519. doi: 10.3934/jimo.2016.12.1507

[19]

David Yang Gao. Solutions and optimality criteria to box constrained nonconvex minimization problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 293-304. doi: 10.3934/jimo.2007.3.293

[20]

Jie Sun, Honglei Xu, Min Zhang. A new interpretation of the progressive hedging algorithm for multistage stochastic minimization problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-8. doi: 10.3934/jimo.2019022

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (6)

[Back to Top]