2013, 18(2): 417-435. doi: 10.3934/dcdsb.2013.18.417

Reduction and identification of dynamic models. Simple example: Generic receptor model

1. 

Department of Mathematics and Physics, Lappeenranta University of Technology, P.O.Box 20, FIN-53851 Lappeenranta, Finland

2. 

32 Campus Drive, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812

3. 

Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland

Received  March 2011 Revised  January 2012 Published  November 2012

Identification of biological models is often complicated by the fact that the available experimental data from field measurements is noisy or incomplete. Moreover, models may be complex, and contain a large number of correlated parameters. As a result, the parameters are poorly identified by the data, and the reliability of the model predictions is questionable. We consider a general scheme for reduction and identification of dynamic models using two modern approaches, Markov chain Monte Carlo sampling methods together with asymptotic model reduction techniques. The ideas are illustrated using a simple example related to bio-medical applications: a model of a generic receptor. In this paper we want to point out what the researchers working in biological, medical, etc., fields should look for in order to identify such problematic situations in modelling, and how to overcome these problems.
Citation: Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417
References:
[1]

Y. Bard, "Nonlinear Parameter Estimation,", Academic Press, (1974).

[2]

A. Gelman and J. Carlin, "Bayesian Data Analysis,", $2^{nd}$ edition, (2004).

[3]

H. Haario, E. Saksman and J. Tamminen, An adaptive metropolis algorithm,, Bernoulli, 7 (2001), 223. doi: 10.2307/3318737.

[4]

H. Haario, M. Laine, A. Mira and E. Saksman, DRAM: Efficient adaptive MCMC,, Stat. Comput., 16 (2006), 339. doi: 10.1007/s11222-006-9438-0.

[5]

H. Haario, L. Kalachev and M. Laine, Reduced Models for Algae Growth,, Bull. Math. Biol., 71 (2009), 1626. doi: 10.1007/s11538-009-9417-7.

[6]

J. Kevorkian and J. Cole, "Singular Perturbation Methods in Applied Mathematics,", Springer-Verlag, (1981).

[7]

J. Murray, "Mathematical Biology,", $2^{nd}$ edition, (1993). doi: 10.1007/b98869.

[8]

R. O'Malley, "Singular Perturbations Methods for Ordinary Differential Equations,", Springer-Verlag, (1991). doi: 10.1007/978-1-4612-0977-5.

[9]

A. Vasil'eva, V. Butuzov and L. Kalachev, "The Boundary Function Method for Singular Perturbation Problems,", SIAM, (1995). doi: 10.1137/1.9781611970784.

show all references

References:
[1]

Y. Bard, "Nonlinear Parameter Estimation,", Academic Press, (1974).

[2]

A. Gelman and J. Carlin, "Bayesian Data Analysis,", $2^{nd}$ edition, (2004).

[3]

H. Haario, E. Saksman and J. Tamminen, An adaptive metropolis algorithm,, Bernoulli, 7 (2001), 223. doi: 10.2307/3318737.

[4]

H. Haario, M. Laine, A. Mira and E. Saksman, DRAM: Efficient adaptive MCMC,, Stat. Comput., 16 (2006), 339. doi: 10.1007/s11222-006-9438-0.

[5]

H. Haario, L. Kalachev and M. Laine, Reduced Models for Algae Growth,, Bull. Math. Biol., 71 (2009), 1626. doi: 10.1007/s11538-009-9417-7.

[6]

J. Kevorkian and J. Cole, "Singular Perturbation Methods in Applied Mathematics,", Springer-Verlag, (1981).

[7]

J. Murray, "Mathematical Biology,", $2^{nd}$ edition, (1993). doi: 10.1007/b98869.

[8]

R. O'Malley, "Singular Perturbations Methods for Ordinary Differential Equations,", Springer-Verlag, (1991). doi: 10.1007/978-1-4612-0977-5.

[9]

A. Vasil'eva, V. Butuzov and L. Kalachev, "The Boundary Function Method for Singular Perturbation Problems,", SIAM, (1995). doi: 10.1137/1.9781611970784.

[1]

Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks & Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803

[2]

Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291

[3]

A Voutilainen, Jari P. Kaipio. Model reduction and pollution source identification from remote sensing data. Inverse Problems & Imaging, 2009, 3 (4) : 711-730. doi: 10.3934/ipi.2009.3.711

[4]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control & Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[5]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[6]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

[7]

Andrei Korobeinikov, William T. Lee. Global asymptotic properties for a Leslie-Gower food chain model. Mathematical Biosciences & Engineering, 2009, 6 (3) : 585-590. doi: 10.3934/mbe.2009.6.585

[8]

Biswajit Sarkar, Arunava Majumder, Mitali Sarkar, Bikash Koli Dey, Gargi Roy. Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction. Journal of Industrial & Management Optimization, 2017, 13 (2) : 1085-1104. doi: 10.3934/jimo.2016063

[9]

Lin Xu, Rongming Wang. Upper bounds for ruin probabilities in an autoregressive risk model with a Markov chain interest rate. Journal of Industrial & Management Optimization, 2006, 2 (2) : 165-175. doi: 10.3934/jimo.2006.2.165

[10]

Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683

[11]

Kun Fan, Yang Shen, Tak Kuen Siu, Rongming Wang. On a Markov chain approximation method for option pricing with regime switching. Journal of Industrial & Management Optimization, 2016, 12 (2) : 529-541. doi: 10.3934/jimo.2016.12.529

[12]

Per Christian Moan, Jitse Niesen. On an asymptotic method for computing the modified energy for symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1105-1120. doi: 10.3934/dcds.2014.34.1105

[13]

Kersten Schmidt, Ralf Hiptmair. Asymptotic boundary element methods for thin conducting sheets. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 619-647. doi: 10.3934/dcdss.2015.8.619

[14]

Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 305-321. doi: 10.3934/dcds.2011.29.305

[15]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[16]

Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen. Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 93-115. doi: 10.3934/mbe.2009.6.93

[17]

Houssein Ayoub, Bedreddine Ainseba, Michel Langlais, Rodolphe Thiébaut. Parameters identification for a model of T cell homeostasis. Mathematical Biosciences & Engineering, 2015, 12 (5) : 917-936. doi: 10.3934/mbe.2015.12.917

[18]

Yuepeng Wang, Yue Cheng, I. Michael Navon, Yuanhong Guan. Parameter identification techniques applied to an environmental pollution model. Journal of Industrial & Management Optimization, 2018, 14 (2) : 817-831. doi: 10.3934/jimo.2017077

[19]

Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete & Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125

[20]

Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313

2017 Impact Factor: 0.972

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]