2013, 10(1): 37-57. doi: 10.3934/mbe.2013.10.37

Distributed delays in a hybrid model of tumor-Immune system interplay

1. 

Department of Informatics, Systems and Communication, University of Milan Bicocca, Viale Sarca 336, I-20126 Milan, Italy, Italy

2. 

Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, I-20141 Milan

Received  July 2012 Revised  September 2012 Published  December 2012

A tumor is kinetically characterized by the presence of multiple spatio-temporal scales in which its cells interplay with, for instance, endothelial cells or Immune system effectors, exchanging various chemical signals. By its nature, tumor growth is an ideal object of hybrid modeling where discrete stochastic processes model low-numbers entities, and mean-field equations model abundant chemical signals. Thus, we follow this approach to model tumor cells, effector cells and Interleukin-2, in order to capture the Immune surveillance effect.
    We here present a hybrid model with a generic delay kernel accounting that, due to many complex phenomena such as chemical transportation and cellular differentiation, the tumor-induced recruitment of effectors exhibits a lag period. This model is a Stochastic Hybrid Automata and its semantics is a Piecewise Deterministic Markov process where a two-dimensional stochastic process is interlinked to a multi-dimensional mean-field system. We instantiate the model with two well-known weak and strong delay kernels and perform simulations by using an algorithm to generate trajectories of this process.
    Via simulations and parametric sensitivity analysis techniques we $(i)$ relate tumor mass growth with the two kernels, we $(ii)$ measure the strength of the Immune surveillance in terms of probability distribution of the eradication times, and $(iii)$ we prove, in the oscillatory regime, the existence of a stochastic bifurcation resulting in delay-induced tumor eradication.
Citation: Giulio Caravagna, Alex Graudenzi, Alberto d’Onofrio. Distributed delays in a hybrid model of tumor-Immune system interplay. Mathematical Biosciences & Engineering, 2013, 10 (1) : 37-57. doi: 10.3934/mbe.2013.10.37
References:
[1]

S. A. Agarwala, "New Applications of Cancer Immunotherapy,", S. A. Agarwala (Guest Editor), (2003), 29.

[2]

R. Barbuti, G. Caravagna, A. Maggiolo-Schettini and P. Milazzo, Delay stochastic simulation of biological systems: A purely delayed approach,, C.Priami et al.(Eds.): Trans. Comp. Sys. Bio. XIII, 6575 (2011), 61.

[3]

M. Barrio, K. Burrage, A. Leier and T. Tian, Oscillatory regulation of Hes1: Discrete stochastic delay modelling and simulation,, PLoS Comp. Bio., 2 (2006).

[4]

N. Bellomo and G. Forni, Complex multicellular systems and Immune competition: New paradigms looking for a mathematical theory,, Curr. Top. Dev. Bio., 81 (2008), 485. doi: 10.1016/S0070-2153(07)81017-9.

[5]

E. Beretta, V. Capasso and F. Rinaldi, Global stability results for a generalized Lotka-Volterra system with distributed delays,, J. Math. Bio., 26 (1988), 661.

[6]

I. Bleumer, E. Oosterwijk, P. de Mulder and P. F. Mulders, Immunotherapy for renal cell carcinoma,, Europ. Urol., 44 (2003), 65. doi: 10.1016/S0302-2838(03)00191-X.

[7]

N. Blumberg, C. Chuang-Stein and J. M. Heal, The relationship of blood transfusion, tumor staging and cancer recurrence,, Transf., 30 (1990), 291. doi: 10.1046/j.1537-2995.1990.30490273432.x.

[8]

K. B. Blyuss and Y. N. Kyrychko, Stability and bifurcations in an epidemic model with varying immunity period,, Bull. Math. Bio., 72 (2010), 490. doi: 10.1007/s11538-009-9458-y.

[9]

L. Bortolussi, Automata and (stochastic) programs. The hybrid automata lattice of a stochastic program,, J. Log. Comp., (2011). doi: 10.1093/logcom/exr045.

[10]

L. Bortolussi and A. Policriti, The importance of being (a little bit) discrete,, ENTCS, 229 (2009), 75.

[11]

M. Bravetti and R. Gorrieri, The theory of interactive generalized semi-Markov processes,, Theoret. Comp. Sci., 282 (2002), 5.

[12]

N. Burić and D. Todorović, Dynamics of delay-differential equations modelling immunology of tumor growth,, Cha. Sol. Fract., 13 (2002), 645.

[13]

G. Caravagna, "Formal Modeling and Simulation of Biological Systems With Delays,", Ph.D. Thesis, (2011).

[14]

G. Caravagna, A. d'Onofrio, P. Milazzo and R. Barbuti, Antitumour Immune surveillance through stochastic oscillations,, J. Th. Biology, 265 (2010), 336.

[15]

G. Caravagna, A. Graudenzi, M.Antoniotti, G. Mauri and A. d'Onofrio, Effects of delayed Immune-response in tumor Immune-system interplay,, Proc. of the First Int. Work. on Hybrid Systems and Biology (HSB), 92 (2012), 106.

[16]

G. Caravagna and J. Hillston, Bio-PEPAd: A non-Markovian extension of Bio-PEPA,, Th. Comp. Sc., 419 (2012), 26.

[17]

G. Caravagna, G. Mauri and A. d'Onofrio, The interplay of intrinsic and extrinsic bounded noises in genetic networks,, Submitted. Preprint at , ().

[18]

V. Costanza and J. H. Seinfeld, Stochastic sensitivity analysis in chemical kinetics,, J. Chem. Phys., 74 (1981), 3852.

[19]

D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables,, Proc. Cambridge Phil. Soc., 51 (1955), 433.

[20]

F. Crauste, Stability and hopf bifurcation for a first-order delay differential equation with distributed delay,, in, (2010), 263.

[21]

P. R. D'Argenio, J.-P. Katoen and E. Brinksma, A stochastic automata model and its algebraic approach,, Proc. 5th Int. Workshop on Process Algebra and Performance Modeling, (1997), 97.

[22]

C. Damiani and P. Lecca, A novel method for parameter sensitivity analysis of stochastic complex systems,, in, (2012).

[23]

A. d'Onofrio, Tumor-Immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy,, Math. Mod. Meth. App. Sci., 16 (2006), 1375.

[24]

A. d'Onofrio, Tumor evasion from Immune system control: Strategies of a MISS to become a MASS,, Ch. Sol. Fract., 31 (2007), 261.

[25]

A. d'Onofrio and P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases,, J. Th. Bio., 256 (2009), 473.

[26]

A. d'Onofrio, On the interaction between the Immune system and an exponentially replicating pathogen,, Math. Biosc. Eng., 7 (2010), 579.

[27]

A. d'Onofrio, G. Caravagna and R. Barbuti, Fine-tuning anti-tumor immunotherapies via stochastic simulations,, BMC Bioinformatics, 13 (2012).

[28]

A. d'Onofrio, Tumour evasion from Immune system control as bounded-noise induced transition,, Phys. Rev. E, 81 (2010).

[29]

A. d'Onofrio and A. Ciancio, A simple biophysical model of tumor evasion form Immune control,, Phys. Rev. E, 84 (2011).

[30]

M. Al Tameemi, M. Chaplain and A. d'Onofrio, Evasion of tumours from the control of the Immune system: consequences of brief encounters,, Biology Direct, (2012).

[31]

A. d'Onofrio, F. Gatti, P. Cerrai and L. Freschi, Delay-induced oscillatory dynamics of Tumor-Immune system interaction,, Math. Comp. Mod., 51 (2010), 572.

[32]

H. H. A. Davis, Piecewise deterministic Markov processes: a general class of non-diffusion stochastic models,, J. Roy. Stat. So. Series B, 46 (1984), 353.

[33]

R. J. DeBoer, P. Hogeweg, F. Hub, J. Dullens, R. A. DeWeger and W. DenOtter, Macrophage T Lymphocyte interactions in the anti-tumor Immune response: A mathematical model,, J. Immunol., 134 (1985), 2748.

[34]

L. G. De Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated Immune response to tumor growth,, Cancer Res., 65 (2005), 7950.

[35]

V. T. De Vito Jr., J. Hellman and S. A. Rosenberg, "Cancer: Principles and Practice of Oncology,", J. P. Lippincott. 2005., (2005).

[36]

G. P. Dunn, L. J. Old and R. D. Schreiber, The three ES of Cancer Immunoediting,, Ann. Rev. of Immun., 22 (2004), 322.

[37]

P. Ehrlich, Ueber den jetzigen Stand der Karzinomforschung,, Ned. Tijdschr. Geneeskd., 5 (1909), 273.

[38]

H. Enderling, L. Hlatky and P. Hahnfeldt, Immunoediting: Evidence of the multifaceted role of the immune system in self-metastatic tumor growth,, Theoretical Biology and Medical Modelling, 9 (2012).

[39]

M. Farkas, "Periodic Motions,", Springer-Verlag, (1994).

[40]

P. Feng, Dynamics of a segmentation clock model with discrete and distributed delays,, Int. J. Biomath., 3 (2010), 1.

[41]

M. Galach, Dynamics of the tumour-Immune system competition: The effect of time delay,, Int. J. App. Math. and Comp. Sci., 13 (2003), 395.

[42]

C. W. Gardiner, "Handbook of Stochastic Methods,", (2nd edition). Springer. 1985., (1985).

[43]

R. Gatti, et al., Cyclic Leukocytosis in Chronic Myelogenous Leukemia: New Perspectives on Pathogenesis and Therapy,, Blood, 41 (1973), 771.

[44]

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions,, J. of Comp. Phys., 22 (1976), 403.

[45]

D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions,, J. of Phys. Chem., 81 (1977), 2340.

[46]

P. W. Glynn, On the role of generalized semi-markov processes in simulation output analysis,, Proc. of the 15th conference on Winter simulation, 1 (1983), 39.

[47]

R. Gunawan, Y. Cao, L. Petzold and F. J. Doyle III, Sensitivity analysis of discrete stochastic systems,, Biophys. J., 88 (2005), 2530.

[48]

S. A. Gourley and S.Ruan, Dynamics of the diffusive Nicholson blowflies equation with distributed delay,, Proc. Roy. Soc. Edinburgh A, 130 (2000), 1275.

[49]

Y. Han and Y. Song, Stability and Hopf bifurcation in a three-neuron unidirectional ring with distributed delays,, Nonlin. Dyn., 69 (2011), 357.

[50]

R. Jessop, "Stability and Hopf Bifurcation Analysis of Hopfield Neural Networks with a General Distribution of Delays,", University of Waterloo, (2011).

[51]

C. H. June, Adoptive T cell therapy for cancer in the clinic,, J. Clin. Invest., 117 (2007), 1466.

[52]

J. M. Kaminski, J. B. Summers, M. B. Ward, M. R. Huber and B. Minev, Immunotherapy and prostate cancer,, Canc. Treat. Rev., 29 (2004), 199.

[53]

B. J. Kennedy, Cyclic leukocyte oscillations in chronic myelogenous leukemia during hydroxyurea therapy,, Blood, 35 (1970), 751.

[54]

D. Kirschner, J. C. Arciero and T. L. Jackson, A mathematical model of tumor-Immune evasion and siRNA treatment,, Discr. Cont. Dyn. Systems, 4 (2004), 39.

[55]

D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-Immune interaction,, J. Math. Biol., 37 (1998), 235.

[56]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Academic Press, (1993).

[57]

Y. Kuang, Delay differential equations,, Sourcebook in Theoretical Ecology, (2011).

[58]

K. A. Kuznetsov and G. D. Knott, Modeling tumor regrowth and immunotherapy,, Math. Comp. Mod., 33 (2001).

[59]

V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis,, Bull. Math. Biol., 56 (1994), 295.

[60]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Sc., 197 (1977), 287.

[61]

R. M. C. May and A. R. McLean, "Theoretical Ecology: Principles and Applications,", Oxford University Press, (2007).

[62]

B. C. Mehta and M. B. Agarwal, Cyclic oscillations in leukocyte count in chronic myeloid leukemia,, A. Hem. 63 (1980), 63 (1980), 68.

[63]

J. D. Murray, "Mathematical Biology,", third edition, (2003).

[64]

D. Pardoll, Does the Immune system see tumours as foreign or self?,, Ann. Rev. Immun., 21 (2003), 807.

[65]

D. Rodriguez-Perez, O. Sotolongo-Grau, R. Espinosa, R. O. Sotolongo-Costa, J. A. Santos Miranda and J. C. Antoranz, Assessment of cancer immunotherapy outcome in terms of the Immune response time features,, Math. Med. and Bio., 24 (2007), 287.

[66]

P. Martin, S. Martin, P. Burton and I. Roitt, "Roitt's Essential Immunology,", Wiley-Blackwell, (2011).

[67]

S. Ruan, Delay differential Eequation in single species dynamics,, in, 1 (): 477.

[68]

A. Sohrabi, J. Sandoz, J. S. Spratt and H. C. Polk, Recurrence of breast cancer: Obesity, tumor size, and axillary lymph node metastases,, JAMA, 244 (1980), 264.

[69]

H. Tsao, A. B. Cosimi and A. J. Sober, Ultra-late recurrence (15 years or longer) of cutaneous melanoma,, Cancer, 79 (1997), 2361.

[70]

A. P. Vicari, G. Caux and G. Trinchieri, Tumor escape from Immune surveillance through dendritic cell inactivation,, Sem. Canc. Biol., 2 (2002), 33.

[71]

M. Villasana and A. Radunskaya, A delay differential equation model for tumour growth,, J. of Math. Bio., 47 (2003), 270.

[72]

H. Vodopick, E. M. Rupp, C. L. Edwards, F. A. Goswitz and J. J. Beauchamp, Spontaneous cyclic leukocytosis and thrombocytosis in chronic granulocytic leukemia,, New Engl. J. of Med., 286 (1972), 284.

[73]

T. L. Whiteside, Tumor-induced death of Immune cells: Its mechanisms and consequences,, Sem. Canc. Biol., 12 (2002), 43.

[74]

E. C. Zeeman, Stability of dynamical systems,, Nonlin., 1 (1988), 115.

[75]

C. H. Zhang and Y. Xiang-Ping, Stability and Hopf bifurcations in a delayed predator-prey system with a distributed delay,, Int. J. Bifur. Chaos Appl. Sci. Eng., 19 (2009), 2283.

show all references

References:
[1]

S. A. Agarwala, "New Applications of Cancer Immunotherapy,", S. A. Agarwala (Guest Editor), (2003), 29.

[2]

R. Barbuti, G. Caravagna, A. Maggiolo-Schettini and P. Milazzo, Delay stochastic simulation of biological systems: A purely delayed approach,, C.Priami et al.(Eds.): Trans. Comp. Sys. Bio. XIII, 6575 (2011), 61.

[3]

M. Barrio, K. Burrage, A. Leier and T. Tian, Oscillatory regulation of Hes1: Discrete stochastic delay modelling and simulation,, PLoS Comp. Bio., 2 (2006).

[4]

N. Bellomo and G. Forni, Complex multicellular systems and Immune competition: New paradigms looking for a mathematical theory,, Curr. Top. Dev. Bio., 81 (2008), 485. doi: 10.1016/S0070-2153(07)81017-9.

[5]

E. Beretta, V. Capasso and F. Rinaldi, Global stability results for a generalized Lotka-Volterra system with distributed delays,, J. Math. Bio., 26 (1988), 661.

[6]

I. Bleumer, E. Oosterwijk, P. de Mulder and P. F. Mulders, Immunotherapy for renal cell carcinoma,, Europ. Urol., 44 (2003), 65. doi: 10.1016/S0302-2838(03)00191-X.

[7]

N. Blumberg, C. Chuang-Stein and J. M. Heal, The relationship of blood transfusion, tumor staging and cancer recurrence,, Transf., 30 (1990), 291. doi: 10.1046/j.1537-2995.1990.30490273432.x.

[8]

K. B. Blyuss and Y. N. Kyrychko, Stability and bifurcations in an epidemic model with varying immunity period,, Bull. Math. Bio., 72 (2010), 490. doi: 10.1007/s11538-009-9458-y.

[9]

L. Bortolussi, Automata and (stochastic) programs. The hybrid automata lattice of a stochastic program,, J. Log. Comp., (2011). doi: 10.1093/logcom/exr045.

[10]

L. Bortolussi and A. Policriti, The importance of being (a little bit) discrete,, ENTCS, 229 (2009), 75.

[11]

M. Bravetti and R. Gorrieri, The theory of interactive generalized semi-Markov processes,, Theoret. Comp. Sci., 282 (2002), 5.

[12]

N. Burić and D. Todorović, Dynamics of delay-differential equations modelling immunology of tumor growth,, Cha. Sol. Fract., 13 (2002), 645.

[13]

G. Caravagna, "Formal Modeling and Simulation of Biological Systems With Delays,", Ph.D. Thesis, (2011).

[14]

G. Caravagna, A. d'Onofrio, P. Milazzo and R. Barbuti, Antitumour Immune surveillance through stochastic oscillations,, J. Th. Biology, 265 (2010), 336.

[15]

G. Caravagna, A. Graudenzi, M.Antoniotti, G. Mauri and A. d'Onofrio, Effects of delayed Immune-response in tumor Immune-system interplay,, Proc. of the First Int. Work. on Hybrid Systems and Biology (HSB), 92 (2012), 106.

[16]

G. Caravagna and J. Hillston, Bio-PEPAd: A non-Markovian extension of Bio-PEPA,, Th. Comp. Sc., 419 (2012), 26.

[17]

G. Caravagna, G. Mauri and A. d'Onofrio, The interplay of intrinsic and extrinsic bounded noises in genetic networks,, Submitted. Preprint at , ().

[18]

V. Costanza and J. H. Seinfeld, Stochastic sensitivity analysis in chemical kinetics,, J. Chem. Phys., 74 (1981), 3852.

[19]

D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables,, Proc. Cambridge Phil. Soc., 51 (1955), 433.

[20]

F. Crauste, Stability and hopf bifurcation for a first-order delay differential equation with distributed delay,, in, (2010), 263.

[21]

P. R. D'Argenio, J.-P. Katoen and E. Brinksma, A stochastic automata model and its algebraic approach,, Proc. 5th Int. Workshop on Process Algebra and Performance Modeling, (1997), 97.

[22]

C. Damiani and P. Lecca, A novel method for parameter sensitivity analysis of stochastic complex systems,, in, (2012).

[23]

A. d'Onofrio, Tumor-Immune system interaction: modeling the tumor-stimulated proliferation of effectors and immunotherapy,, Math. Mod. Meth. App. Sci., 16 (2006), 1375.

[24]

A. d'Onofrio, Tumor evasion from Immune system control: Strategies of a MISS to become a MASS,, Ch. Sol. Fract., 31 (2007), 261.

[25]

A. d'Onofrio and P. Manfredi, Information-related changes in contact patterns may trigger oscillations in the endemic prevalence of infectious diseases,, J. Th. Bio., 256 (2009), 473.

[26]

A. d'Onofrio, On the interaction between the Immune system and an exponentially replicating pathogen,, Math. Biosc. Eng., 7 (2010), 579.

[27]

A. d'Onofrio, G. Caravagna and R. Barbuti, Fine-tuning anti-tumor immunotherapies via stochastic simulations,, BMC Bioinformatics, 13 (2012).

[28]

A. d'Onofrio, Tumour evasion from Immune system control as bounded-noise induced transition,, Phys. Rev. E, 81 (2010).

[29]

A. d'Onofrio and A. Ciancio, A simple biophysical model of tumor evasion form Immune control,, Phys. Rev. E, 84 (2011).

[30]

M. Al Tameemi, M. Chaplain and A. d'Onofrio, Evasion of tumours from the control of the Immune system: consequences of brief encounters,, Biology Direct, (2012).

[31]

A. d'Onofrio, F. Gatti, P. Cerrai and L. Freschi, Delay-induced oscillatory dynamics of Tumor-Immune system interaction,, Math. Comp. Mod., 51 (2010), 572.

[32]

H. H. A. Davis, Piecewise deterministic Markov processes: a general class of non-diffusion stochastic models,, J. Roy. Stat. So. Series B, 46 (1984), 353.

[33]

R. J. DeBoer, P. Hogeweg, F. Hub, J. Dullens, R. A. DeWeger and W. DenOtter, Macrophage T Lymphocyte interactions in the anti-tumor Immune response: A mathematical model,, J. Immunol., 134 (1985), 2748.

[34]

L. G. De Pillis, A. E. Radunskaya and C. L. Wiseman, A validated mathematical model of cell-mediated Immune response to tumor growth,, Cancer Res., 65 (2005), 7950.

[35]

V. T. De Vito Jr., J. Hellman and S. A. Rosenberg, "Cancer: Principles and Practice of Oncology,", J. P. Lippincott. 2005., (2005).

[36]

G. P. Dunn, L. J. Old and R. D. Schreiber, The three ES of Cancer Immunoediting,, Ann. Rev. of Immun., 22 (2004), 322.

[37]

P. Ehrlich, Ueber den jetzigen Stand der Karzinomforschung,, Ned. Tijdschr. Geneeskd., 5 (1909), 273.

[38]

H. Enderling, L. Hlatky and P. Hahnfeldt, Immunoediting: Evidence of the multifaceted role of the immune system in self-metastatic tumor growth,, Theoretical Biology and Medical Modelling, 9 (2012).

[39]

M. Farkas, "Periodic Motions,", Springer-Verlag, (1994).

[40]

P. Feng, Dynamics of a segmentation clock model with discrete and distributed delays,, Int. J. Biomath., 3 (2010), 1.

[41]

M. Galach, Dynamics of the tumour-Immune system competition: The effect of time delay,, Int. J. App. Math. and Comp. Sci., 13 (2003), 395.

[42]

C. W. Gardiner, "Handbook of Stochastic Methods,", (2nd edition). Springer. 1985., (1985).

[43]

R. Gatti, et al., Cyclic Leukocytosis in Chronic Myelogenous Leukemia: New Perspectives on Pathogenesis and Therapy,, Blood, 41 (1973), 771.

[44]

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions,, J. of Comp. Phys., 22 (1976), 403.

[45]

D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions,, J. of Phys. Chem., 81 (1977), 2340.

[46]

P. W. Glynn, On the role of generalized semi-markov processes in simulation output analysis,, Proc. of the 15th conference on Winter simulation, 1 (1983), 39.

[47]

R. Gunawan, Y. Cao, L. Petzold and F. J. Doyle III, Sensitivity analysis of discrete stochastic systems,, Biophys. J., 88 (2005), 2530.

[48]

S. A. Gourley and S.Ruan, Dynamics of the diffusive Nicholson blowflies equation with distributed delay,, Proc. Roy. Soc. Edinburgh A, 130 (2000), 1275.

[49]

Y. Han and Y. Song, Stability and Hopf bifurcation in a three-neuron unidirectional ring with distributed delays,, Nonlin. Dyn., 69 (2011), 357.

[50]

R. Jessop, "Stability and Hopf Bifurcation Analysis of Hopfield Neural Networks with a General Distribution of Delays,", University of Waterloo, (2011).

[51]

C. H. June, Adoptive T cell therapy for cancer in the clinic,, J. Clin. Invest., 117 (2007), 1466.

[52]

J. M. Kaminski, J. B. Summers, M. B. Ward, M. R. Huber and B. Minev, Immunotherapy and prostate cancer,, Canc. Treat. Rev., 29 (2004), 199.

[53]

B. J. Kennedy, Cyclic leukocyte oscillations in chronic myelogenous leukemia during hydroxyurea therapy,, Blood, 35 (1970), 751.

[54]

D. Kirschner, J. C. Arciero and T. L. Jackson, A mathematical model of tumor-Immune evasion and siRNA treatment,, Discr. Cont. Dyn. Systems, 4 (2004), 39.

[55]

D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-Immune interaction,, J. Math. Biol., 37 (1998), 235.

[56]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Academic Press, (1993).

[57]

Y. Kuang, Delay differential equations,, Sourcebook in Theoretical Ecology, (2011).

[58]

K. A. Kuznetsov and G. D. Knott, Modeling tumor regrowth and immunotherapy,, Math. Comp. Mod., 33 (2001).

[59]

V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis,, Bull. Math. Biol., 56 (1994), 295.

[60]

M. C. Mackey and L. Glass, Oscillation and chaos in physiological control systems,, Sc., 197 (1977), 287.

[61]

R. M. C. May and A. R. McLean, "Theoretical Ecology: Principles and Applications,", Oxford University Press, (2007).

[62]

B. C. Mehta and M. B. Agarwal, Cyclic oscillations in leukocyte count in chronic myeloid leukemia,, A. Hem. 63 (1980), 63 (1980), 68.

[63]

J. D. Murray, "Mathematical Biology,", third edition, (2003).

[64]

D. Pardoll, Does the Immune system see tumours as foreign or self?,, Ann. Rev. Immun., 21 (2003), 807.

[65]

D. Rodriguez-Perez, O. Sotolongo-Grau, R. Espinosa, R. O. Sotolongo-Costa, J. A. Santos Miranda and J. C. Antoranz, Assessment of cancer immunotherapy outcome in terms of the Immune response time features,, Math. Med. and Bio., 24 (2007), 287.

[66]

P. Martin, S. Martin, P. Burton and I. Roitt, "Roitt's Essential Immunology,", Wiley-Blackwell, (2011).

[67]

S. Ruan, Delay differential Eequation in single species dynamics,, in, 1 (): 477.

[68]

A. Sohrabi, J. Sandoz, J. S. Spratt and H. C. Polk, Recurrence of breast cancer: Obesity, tumor size, and axillary lymph node metastases,, JAMA, 244 (1980), 264.

[69]

H. Tsao, A. B. Cosimi and A. J. Sober, Ultra-late recurrence (15 years or longer) of cutaneous melanoma,, Cancer, 79 (1997), 2361.

[70]

A. P. Vicari, G. Caux and G. Trinchieri, Tumor escape from Immune surveillance through dendritic cell inactivation,, Sem. Canc. Biol., 2 (2002), 33.

[71]

M. Villasana and A. Radunskaya, A delay differential equation model for tumour growth,, J. of Math. Bio., 47 (2003), 270.

[72]

H. Vodopick, E. M. Rupp, C. L. Edwards, F. A. Goswitz and J. J. Beauchamp, Spontaneous cyclic leukocytosis and thrombocytosis in chronic granulocytic leukemia,, New Engl. J. of Med., 286 (1972), 284.

[73]

T. L. Whiteside, Tumor-induced death of Immune cells: Its mechanisms and consequences,, Sem. Canc. Biol., 12 (2002), 43.

[74]

E. C. Zeeman, Stability of dynamical systems,, Nonlin., 1 (1988), 115.

[75]

C. H. Zhang and Y. Xiang-Ping, Stability and Hopf bifurcations in a delayed predator-prey system with a distributed delay,, Int. J. Bifur. Chaos Appl. Sci. Eng., 19 (2009), 2283.

[1]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[2]

Urszula Foryś, Jan Poleszczuk. A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 627-641. doi: 10.3934/mbe.2011.8.627

[3]

Fuke Wu, Yangzi Hu. Stochastic Lotka-Volterra system with unbounded distributed delay. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 275-288. doi: 10.3934/dcdsb.2010.14.275

[4]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[5]

A. R. Humphries, O. A. DeMasi, F. M. G. Magpantay, F. Upham. Dynamics of a delay differential equation with multiple state-dependent delays. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2701-2727. doi: 10.3934/dcds.2012.32.2701

[6]

Dan Liu, Shigui Ruan, Deming Zhu. Bifurcation analysis in models of tumor and immune system interactions. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 151-168. doi: 10.3934/dcdsb.2009.12.151

[7]

Hui Liang, Hermann Brunner. Collocation methods for differential equations with piecewise linear delays. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1839-1857. doi: 10.3934/cpaa.2012.11.1839

[8]

Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks & Heterogeneous Media, 2017, 12 (3) : 417-459. doi: 10.3934/nhm.2017019

[9]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

[10]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[11]

Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 55-72. doi: 10.3934/dcdsb.2014.19.55

[12]

Qun Liu, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2479-2500. doi: 10.3934/dcdsb.2017127

[13]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[14]

Samuel Bernard, Jacques Bélair, Michael C Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 233-256. doi: 10.3934/dcdsb.2001.1.233

[15]

Marcelo Sobottka. Right-permutative cellular automata on topological Markov chains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1095-1109. doi: 10.3934/dcds.2008.20.1095

[16]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[17]

Canan Çelik. Dynamical behavior of a ratio dependent predator-prey system with distributed delay. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 719-738. doi: 10.3934/dcdsb.2011.16.719

[18]

Dan Liu, Shigui Ruan, Deming Zhu. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions. Mathematical Biosciences & Engineering, 2012, 9 (2) : 347-368. doi: 10.3934/mbe.2012.9.347

[19]

Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 787-802. doi: 10.3934/mbe.2013.10.787

[20]

Martina Conte, Maria Groppi, Giampiero Spiga. Qualitative analysis of kinetic-based models for tumor-immune system interaction. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2393-2414. doi: 10.3934/dcdsb.2018060

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]